Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-1.0.1.tar.gz (43.5 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-1.0.1-py3-none-any.whl (53.3 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-1.0.1.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.1.tar.gz
Algorithm Hash digest
SHA256 a3eb99f1001181f5fa6ccb95c28cd8a3202379775cc7366f5c64e5421a537482
MD5 dbd23fb0c32f404fbe122fdca9c278cc
BLAKE2b-256 af7c71dbabd6ae8a4816a54246de4a9cc95f6221157dd5086a40e7e0065b53f8

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-1.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 29dc243098a6a5a6972578bc5543c281b871c772a9969abb905d31a4ea39d019
MD5 b2e9cf2998ffbd57900b4b484a4fb9dd
BLAKE2b-256 dc97c934602bc36bb0f835352546f6334c5c8d25fd0f06b5df00a879f5f9daca

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page