Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-1.0.10.tar.gz (71.4 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-1.0.10-py3-none-any.whl (86.0 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-1.0.10.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.10.tar.gz
Algorithm Hash digest
SHA256 8c163d198a084217a21c7e4c0e40954876e0bc1de08364f2e6f4b160a8652217
MD5 d942e7230a0e0688a97bd7963642c4f4
BLAKE2b-256 2561c38e524325b9a39fc1e2b67f99d85cdba82ab0f16663da670a43934bff26

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-1.0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 7b745378c17ed22d8c38003a1da994bd0dd44d3288e2c3c9f82dba5ed4b3de6b
MD5 3a22b928789412c9de7cf6cb5f5f6170
BLAKE2b-256 653136f22e0e3ef9437ae944f6d31800d8bc86802f35bd53df9c8e5720911c5e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page