Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-1.0.2.tar.gz (45.5 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-1.0.2-py3-none-any.whl (55.1 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-1.0.2.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.2.tar.gz
Algorithm Hash digest
SHA256 cb6b7eb98bc026c6939fa6736a3a507ae87ff973671eaa64d408ad7928cd126c
MD5 54e08dedda4b413a1889c18fa5c980bd
BLAKE2b-256 9ea5507116ae75b22e4caea2da2cf798efc9493f0b81f15475483a931ec62e46

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-1.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 9c544226734fd74464c022bd4d2a97e3e6295bad76333c6e6402f7f24630beb6
MD5 2df78e10028ad3d4674564f3f2f3c3c7
BLAKE2b-256 8d55bed104cb32ced608a0ecc666184424c5fa5a57a54d3cb9f57d68b7b92570

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page