Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-1.0.3.tar.gz (45.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file langchain_google_vertexai-1.0.3.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.3.tar.gz
Algorithm Hash digest
SHA256 a3929bc07b971072e7cd21ffe28d843640faaf93763f473077d6786745cce247
MD5 ac2e55d53d21ecc8163dc2fa82d86bb9
BLAKE2b-256 e70f6ef784bfd1af11f4a3eddd52380f9a36c637b9a8b8f414d926fcdf1c90c2

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-1.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 407caa2b10cd20d4748cebfc6e405d28d8ef4a0e4f21b01739eca4e24c4f04d2
MD5 9a167e7a40ee8e3f3fa7211912d3b85e
BLAKE2b-256 f1c1948df7f75b9d41406e0a1c35a8b501e2c778e36fdd4eb092660c8922a3ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page