Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-1.0.4.tar.gz (47.7 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-1.0.4-py3-none-any.whl (57.7 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-1.0.4.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.4.tar.gz
Algorithm Hash digest
SHA256 bb2d2e93cc2896b9bdc96789c2df247f6392184dffc0c3dddc06889f2b530465
MD5 d759a49ad4f6423809152a0cf4629b9d
BLAKE2b-256 bb15f3278752817667d340c4553055bdf942342b02d724be2cc8ba1ebf305479

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-1.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 f9d217df2d5cfafb2e551ddd5f1c43611222f542ee0df0cc3b5faed82e657ee3
MD5 dad2f56b2959e8371864f68da64d6331
BLAKE2b-256 29748169d6536a87973a554b68b2fd73afc762106dd9dbd6eb037d855e24c017

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page