Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-1.0.5.tar.gz (52.7 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file langchain_google_vertexai-1.0.5.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.5.tar.gz
Algorithm Hash digest
SHA256 50005dc12ff9d66bbbab9e1ab660574b1584eee3e7b5a647dc8a009a94f0c500
MD5 d5d43f6360f1074ed8c13cd03b5d8d26
BLAKE2b-256 92fecb43564e21a11ca7f3a998a7a5688bf8bdd431a4f35d5fa163c90bea06c7

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-1.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 38f4a39bf35927d744d0883907c4d4a59eef059e9b36f28bb5c737c2aae6963b
MD5 bb76733548f5825f4377f42a53a83a3b
BLAKE2b-256 e1cf6bd2446f3362748b2efe43507f24af879827bbbde2805e10bfdae26e7dd8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page