Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-1.0.6.tar.gz (61.3 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-1.0.6-py3-none-any.whl (73.0 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-1.0.6.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.6.tar.gz
Algorithm Hash digest
SHA256 000c4cfd0dee73317e1752dfeec76a08c5bf24f7a134d79b9905a720ac886b11
MD5 eb7794c3612d356eb287350b66ba1280
BLAKE2b-256 32e58e87f88b6c94a6857e9c03e68487cae564b83a48e095a02583e8daa8689f

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-1.0.6-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.6-py3-none-any.whl
Algorithm Hash digest
SHA256 240a9be3ae749335ec9a495502ca8f2bff60a432b8400a21cbd93b415e4d166d
MD5 d7e6ae2248e5bc05d539ffb4cda441ae
BLAKE2b-256 65b9895fb3ae3a0c7636b9feb779ec082c6850f493e2eb07f832f441dc986e57

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page