Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-1.0.7.tar.gz (63.3 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-1.0.7-py3-none-any.whl (75.3 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-1.0.7.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.7.tar.gz
Algorithm Hash digest
SHA256 ac7d8ad8e832b1d5a752cb0637082d7e2c451bc33e512eec7bf9662b1aac41db
MD5 ed0ffbb5706ddbe1ed37db7b7b756553
BLAKE2b-256 699c50c3a851188344e39b555e4aa9af27f91bd27dcff6f617d575c12f5f1713

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-1.0.7-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 2c3516171fb0a6557ff03d073bdbf6e9bbb5f291cccbcd8febd97affa2e69574
MD5 fb764b553e7e586e3750c2b545e50616
BLAKE2b-256 2b84a391461ad4ecf393143a9b7d8ccd060e985fd2b57be33480cb5606f3cae2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page