Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-1.0.9.tar.gz (71.5 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-1.0.9-py3-none-any.whl (86.0 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-1.0.9.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.9.tar.gz
Algorithm Hash digest
SHA256 c112d46b79737fc874184f8b36de632dccc7293c834344b37d38aa741777f61d
MD5 38a3e979baa62cc5e3a7e0255d72eb4d
BLAKE2b-256 e396e9e70e58fc708c244d040a193190aaa1c806a8acef037feb2220b6e617fe

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-1.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-1.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 1e3f90c9ee84425aa5926390e28f181f378a6dc06d5393f1b385da178577d52b
MD5 c7d95be74bfcdf64168692ad38896e61
BLAKE2b-256 35157b099fefb6c2024df44a257f5e4064bf081b4d8feafa3890054fee4db24f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page