Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-2.0.0.dev1.tar.gz (72.3 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file langchain_google_vertexai-2.0.0.dev1.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-2.0.0.dev1.tar.gz
Algorithm Hash digest
SHA256 2a8c911ec9312c38786d881c7f83c6c401d592b3face7084b2573f002a47b6d3
MD5 3d67c03667c9bcbffc9f33c08ee4f03b
BLAKE2b-256 c352f0f10a1cb47cf4a3e43a4e47f639d5c4c303a984997fbfe8c4565b3d0b26

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-2.0.0.dev1-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-2.0.0.dev1-py3-none-any.whl
Algorithm Hash digest
SHA256 ed0885a96514ad0d20a2279cfce8e5d5bed83e9aa9f69dbb8c9e7e5295916e97
MD5 30fa7494716c3fe27893f7b810a44c62
BLAKE2b-256 eeb2a1eeca48bc756fa6a162e56a0dd8ee2cb008833d1642323934d85bcf613a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page