Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-2.0.1.tar.gz (72.3 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-2.0.1-py3-none-any.whl (86.9 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-2.0.1.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-2.0.1.tar.gz
Algorithm Hash digest
SHA256 1c37660f07fb6139710889ec2ef47e0a4bfe4a3e4cff2b302993e28b3dbd427b
MD5 a0cbd157dff0f945396b04e9a441ece7
BLAKE2b-256 50a31b02eb450e6aed6e7dea60d8be8b75d37d49850cdb871e44643145b678b6

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-2.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-2.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 45bc042e52efe39b2c33a4d20e9ea884bc14510e47de4049c9285ba561a4cccb
MD5 0eb215d91c0411056b4d0d0236011b21
BLAKE2b-256 cdd43501052a766e491918b11a3263cb14facdbbfaf3b0ec2f917598aac2b503

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page