Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-2.0.3.tar.gz (72.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file langchain_google_vertexai-2.0.3.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-2.0.3.tar.gz
Algorithm Hash digest
SHA256 6f71061b578c0cd44fd5a147b61f66a1486bfc8b1dc69b4ac31e0f3c470d90d8
MD5 0c897fe4be408ee2a9178bd3a1d5f6c5
BLAKE2b-256 eb48215f87b28e022189a369f08f1dd617a81456dc7d52fdca7291db2cb52e55

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-2.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-2.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 43835bed9f03f6969b3f8b73356c44d7898d209c69bd5124b0a80c35d8cebdd0
MD5 9ad9bf6ea2c480b768bc31998fb14be5
BLAKE2b-256 c1164789b7698e46f6300907526d2ae3fcd0160bbbaaceceac3e9cec936dba6e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page