Skip to main content

An integration package connecting Google VertexAI and LangChain

Project description

langchain-google-vertexai

This package contains the LangChain integrations for Google Cloud generative models.

Installation

pip install -U langchain-google-vertexai

Chat Models

ChatVertexAI class exposes models such as gemini-pro and chat-bison.

To use, you should have Google Cloud project with APIs enabled, and configured credentials. Initialize the model as:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro")
llm.invoke("Sing a ballad of LangChain.")

You can use other models, e.g. chat-bison:

from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="chat-bison", temperature=0.3)
llm.invoke("Sing a ballad of LangChain.")

Multimodal inputs

Gemini vision model supports image inputs when providing a single chat message. Example:

from langchain_core.messages import HumanMessage
from langchain_google_vertexai import ChatVertexAI

llm = ChatVertexAI(model_name="gemini-pro-vision")
# example
message = HumanMessage(
    content=[
        {
            "type": "text",
            "text": "What's in this image?",
        },  # You can optionally provide text parts
        {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}},
    ]
)
llm.invoke([message])

The value of image_url can be any of the following:

  • A public image URL
  • An accessible gcs file (e.g., "gcs://path/to/file.png")
  • A local file path
  • A base64 encoded image (e.g., )

Embeddings

You can use Google Cloud's embeddings models as:

from langchain_google_vertexai import VertexAIEmbeddings

embeddings = VertexAIEmbeddings()
embeddings.embed_query("hello, world!")

LLMs

You can use Google Cloud's generative AI models as Langchain LLMs:

from langchain_core.prompts import PromptTemplate
from langchain_google_vertexai import ChatVertexAI

template = """Question: {question}

Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)

llm = ChatVertexAI(model_name="gemini-pro")
chain = prompt | llm

question = "Who was the president of the USA in 1994?"
print(chain.invoke({"question": question}))

You can use Gemini and Palm models, including code-generations ones:

from langchain_google_vertexai import VertexAI

llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3)

question = "Write a python function that checks if a string is a valid email address"

output = llm(question)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_google_vertexai-2.0.5.tar.gz (73.9 kB view details)

Uploaded Source

Built Distribution

langchain_google_vertexai-2.0.5-py3-none-any.whl (88.6 kB view details)

Uploaded Python 3

File details

Details for the file langchain_google_vertexai-2.0.5.tar.gz.

File metadata

File hashes

Hashes for langchain_google_vertexai-2.0.5.tar.gz
Algorithm Hash digest
SHA256 2e24806fa18f5fd431e32dadf68f185fc5203afad40c0204919023d3f1ada6a3
MD5 29c70de2fe7910e9606e758d1bdc9e39
BLAKE2b-256 d4e230f7d9775b17a4a8d5f02fe3ec855351cb00199623878c8bcb41ad04eb83

See more details on using hashes here.

File details

Details for the file langchain_google_vertexai-2.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_google_vertexai-2.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 062ff13a7b4e28ebc7911db20ab1d2ea317ded02c9e69f5a419537790878add9
MD5 e068d336e063809b234002bb75b7d02d
BLAKE2b-256 e6f8c84dad0f6802c69528c0dedcb3cf0012d6a2b2cb7843b1467f1ef96b9892

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page