Skip to main content

An integration package connecting Mistral and LangChain

Project description

langchain-mistralai

This package contains the LangChain integrations for MistralAI through their mistralai SDK.

Installation

pip install -U langchain-mistralai

Chat Models

This package contains the ChatMistralAI class, which is the recommended way to interface with MistralAI models.

To use, install the requirements, and configure your environment.

export MISTRAL_API_KEY=your-api-key

Then initialize

from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI

chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)

ChatMistralAI also supports async and streaming functionality:

# For async...
await chat.ainvoke(messages)

# For streaming...
for chunk in chat.stream(messages):
    print(chunk.content, end="", flush=True)

Embeddings

With MistralAIEmbeddings, you can directly use the default model 'mistral-embed', or set a different one if available.

Choose model

embedding.model = 'mistral-embed'

Simple query

res_query = embedding.embed_query("The test information")

Documents

res_document = embedding.embed_documents(["test1", "another test"])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_mistralai-0.0.3.tar.gz (7.0 kB view details)

Uploaded Source

Built Distribution

langchain_mistralai-0.0.3-py3-none-any.whl (7.7 kB view details)

Uploaded Python 3

File details

Details for the file langchain_mistralai-0.0.3.tar.gz.

File metadata

  • Download URL: langchain_mistralai-0.0.3.tar.gz
  • Upload date:
  • Size: 7.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.7

File hashes

Hashes for langchain_mistralai-0.0.3.tar.gz
Algorithm Hash digest
SHA256 2e45ee0118df8e4b5577ce8c4f89743059801e473f40a8b7c89cb99dd715f423
MD5 a1dcb06853197be56e0a68ee88646c10
BLAKE2b-256 696c27485929080276ae968ad07125c413dd3988540c6e4859408c06e70a7f60

See more details on using hashes here.

File details

Details for the file langchain_mistralai-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_mistralai-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 ebb8ba3d7978b5ee16f7e09512ffa434e00bc9863f1537f1a5f5203882d99619
MD5 5d506ea0b50f6f0f4a031e48986d0465
BLAKE2b-256 514813e86c186cdf8b581cf6807a32f97ae7bd4855d8952dbbd2999a978bfc3a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page