Skip to main content

An integration package connecting Mistral and LangChain

Project description

langchain-mistralai

This package contains the LangChain integrations for MistralAI through their mistralai SDK.

Installation

pip install -U langchain-mistralai

Chat Models

This package contains the ChatMistralAI class, which is the recommended way to interface with MistralAI models.

To use, install the requirements, and configure your environment.

export MISTRAL_API_KEY=your-api-key

Then initialize

from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI

chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)

ChatMistralAI also supports async and streaming functionality:

# For async...
await chat.ainvoke(messages)

# For streaming...
for chunk in chat.stream(messages):
    print(chunk.content, end="", flush=True)

Embeddings

With MistralAIEmbeddings, you can directly use the default model 'mistral-embed', or set a different one if available.

Choose model

embedding.model = 'mistral-embed'

Simple query

res_query = embedding.embed_query("The test information")

Documents

res_document = embedding.embed_documents(["test1", "another test"])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_mistralai-0.0.5.tar.gz (9.7 kB view details)

Uploaded Source

Built Distribution

langchain_mistralai-0.0.5-py3-none-any.whl (10.4 kB view details)

Uploaded Python 3

File details

Details for the file langchain_mistralai-0.0.5.tar.gz.

File metadata

  • Download URL: langchain_mistralai-0.0.5.tar.gz
  • Upload date:
  • Size: 9.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for langchain_mistralai-0.0.5.tar.gz
Algorithm Hash digest
SHA256 fdfa827f0d9a9ed65e86db769806b4a8dd859b1ecaef1a1925eb254c3d7b3a8a
MD5 770e406dd384fb053a0159d0e00a49cf
BLAKE2b-256 88c53bdc76fff551d3ba577f96b65643cad14fcf8ef9043162c22fbca30e1b76

See more details on using hashes here.

File details

Details for the file langchain_mistralai-0.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_mistralai-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 405ebb3262f61f429a42b7241473fff3d35c977857803e224f793ed800601156
MD5 eb5fe5768f2161f17c30cc4ee7a25fbc
BLAKE2b-256 18a6abfda95c173f15cc1fa6239bf8c55e9be29aabb1c5566771e25d0f7ffee8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page