Skip to main content

An integration package connecting Mistral and LangChain

Project description

langchain-mistralai

This package contains the LangChain integrations for MistralAI through their mistralai SDK.

Installation

pip install -U langchain-mistralai

Chat Models

This package contains the ChatMistralAI class, which is the recommended way to interface with MistralAI models.

To use, install the requirements, and configure your environment.

export MISTRAL_API_KEY=your-api-key

Then initialize

from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI

chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)

ChatMistralAI also supports async and streaming functionality:

# For async...
await chat.ainvoke(messages)

# For streaming...
for chunk in chat.stream(messages):
    print(chunk.content, end="", flush=True)

Embeddings

With MistralAIEmbeddings, you can directly use the default model 'mistral-embed', or set a different one if available.

Choose model

embedding.model = 'mistral-embed'

Simple query

res_query = embedding.embed_query("The test information")

Documents

res_document = embedding.embed_documents(["test1", "another test"])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_mistralai-0.1.0.tar.gz (9.8 kB view details)

Uploaded Source

Built Distribution

langchain_mistralai-0.1.0-py3-none-any.whl (10.6 kB view details)

Uploaded Python 3

File details

Details for the file langchain_mistralai-0.1.0.tar.gz.

File metadata

  • Download URL: langchain_mistralai-0.1.0.tar.gz
  • Upload date:
  • Size: 9.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for langchain_mistralai-0.1.0.tar.gz
Algorithm Hash digest
SHA256 180c7a219418bb47c3627da2d8e2adbcc5a8ca46645c839ce2f2ff64038d1632
MD5 e7dbd2fa76fdc42faefed10b96ef4f1b
BLAKE2b-256 3bd3fdc7faf2399a6d81cf66ac08dec5c198c1347686a53d3ad6077b05fbb921

See more details on using hashes here.

File details

Details for the file langchain_mistralai-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_mistralai-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7f3c6c575a3c622d24bc00caf04ea9d074e87fa469737fd43993becf3f7a9645
MD5 9df11f44bbf133bf1d1b77b0ea8d1a85
BLAKE2b-256 f20080322f2346fb9d4920c4d68480833a754a38103cbd4fbdcf2c2a7d176007

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page