Skip to main content

An integration package connecting Mistral and LangChain

Project description

langchain-mistralai

This package contains the LangChain integrations for MistralAI through their mistralai SDK.

Installation

pip install -U langchain-mistralai

Chat Models

This package contains the ChatMistralAI class, which is the recommended way to interface with MistralAI models.

To use, install the requirements, and configure your environment.

export MISTRAL_API_KEY=your-api-key

Then initialize

from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI

chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)

ChatMistralAI also supports async and streaming functionality:

# For async...
await chat.ainvoke(messages)

# For streaming...
for chunk in chat.stream(messages):
    print(chunk.content, end="", flush=True)

Embeddings

With MistralAIEmbeddings, you can directly use the default model 'mistral-embed', or set a different one if available.

Choose model

embedding.model = 'mistral-embed'

Simple query

res_query = embedding.embed_query("The test information")

Documents

res_document = embedding.embed_documents(["test1", "another test"])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_mistralai-0.1.1.tar.gz (10.0 kB view details)

Uploaded Source

Built Distribution

langchain_mistralai-0.1.1-py3-none-any.whl (10.9 kB view details)

Uploaded Python 3

File details

Details for the file langchain_mistralai-0.1.1.tar.gz.

File metadata

  • Download URL: langchain_mistralai-0.1.1.tar.gz
  • Upload date:
  • Size: 10.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for langchain_mistralai-0.1.1.tar.gz
Algorithm Hash digest
SHA256 3c6323154996804f09db28f90e8585bfd271bd1a27babe7c548b0a847b8d2825
MD5 530f2022513b05708eea6ac70cd2a040
BLAKE2b-256 762940d54e507e6fef1cd713ddee2a0f9996a2f0b6e380a13540bca5c633a819

See more details on using hashes here.

File details

Details for the file langchain_mistralai-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_mistralai-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 1e5fadd83d26df684dcf89a2755d9befb9b82445ce162b4af85aaa608b37ca99
MD5 ea1f61da1f6f737829c610c6b38f702d
BLAKE2b-256 841ec4c2954ed34d9d5cbbbea980fde1a230147de8ad738e6eeaf5e5c1b941a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page