Skip to main content

An integration package connecting Mistral and LangChain

Project description

langchain-mistralai

This package contains the LangChain integrations for MistralAI through their mistralai SDK.

Installation

pip install -U langchain-mistralai

Chat Models

This package contains the ChatMistralAI class, which is the recommended way to interface with MistralAI models.

To use, install the requirements, and configure your environment.

export MISTRAL_API_KEY=your-api-key

Then initialize

from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI

chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)

ChatMistralAI also supports async and streaming functionality:

# For async...
await chat.ainvoke(messages)

# For streaming...
for chunk in chat.stream(messages):
    print(chunk.content, end="", flush=True)

Embeddings

With MistralAIEmbeddings, you can directly use the default model 'mistral-embed', or set a different one if available.

Choose model

embedding.model = 'mistral-embed'

Simple query

res_query = embedding.embed_query("The test information")

Documents

res_document = embedding.embed_documents(["test1", "another test"])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_mistralai-0.1.4.tar.gz (11.3 kB view details)

Uploaded Source

Built Distribution

langchain_mistralai-0.1.4-py3-none-any.whl (12.2 kB view details)

Uploaded Python 3

File details

Details for the file langchain_mistralai-0.1.4.tar.gz.

File metadata

  • Download URL: langchain_mistralai-0.1.4.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for langchain_mistralai-0.1.4.tar.gz
Algorithm Hash digest
SHA256 8c92610c5059f2391c82e89f3aed49a598e92a6c5d1f1ed81362d8a067c5d1d0
MD5 55cc0a1e866dc7f405a3b8b8a4341306
BLAKE2b-256 27bc1d744ef5249c4a53030db13fae22dc4c7e305ae4d0ed768d2fa6607bee92

See more details on using hashes here.

File details

Details for the file langchain_mistralai-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_mistralai-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 72084ad072c8814c9202d5b5e6f1e750ebde474d082b6a6234566d4797da043d
MD5 5f90c31be045df8007174f30eb2ad7a4
BLAKE2b-256 2d7a833ab0bc89eb1b274c0ed549770003f219e4a1d78c0075d89f9e937bc624

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page