Skip to main content

An integration package connecting Mistral and LangChain

Project description

langchain-mistralai

This package contains the LangChain integrations for MistralAI through their mistralai SDK.

Installation

pip install -U langchain-mistralai

Chat Models

This package contains the ChatMistralAI class, which is the recommended way to interface with MistralAI models.

To use, install the requirements, and configure your environment.

export MISTRAL_API_KEY=your-api-key

Then initialize

from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI

chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)

ChatMistralAI also supports async and streaming functionality:

# For async...
await chat.ainvoke(messages)

# For streaming...
for chunk in chat.stream(messages):
    print(chunk.content, end="", flush=True)

Embeddings

With MistralAIEmbeddings, you can directly use the default model 'mistral-embed', or set a different one if available.

Choose model

embedding.model = 'mistral-embed'

Simple query

res_query = embedding.embed_query("The test information")

Documents

res_document = embedding.embed_documents(["test1", "another test"])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_mistralai-0.1.6.tar.gz (11.3 kB view details)

Uploaded Source

Built Distribution

langchain_mistralai-0.1.6-py3-none-any.whl (12.2 kB view details)

Uploaded Python 3

File details

Details for the file langchain_mistralai-0.1.6.tar.gz.

File metadata

  • Download URL: langchain_mistralai-0.1.6.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for langchain_mistralai-0.1.6.tar.gz
Algorithm Hash digest
SHA256 03bd75b4fd1bfa04e8703109a1c6865923cbdcc9e435f1fbf26b84ea150b7162
MD5 e3053a05c8c8851731f6f0553925dc69
BLAKE2b-256 08d749fcfdf004cfd2b014612ac1a26c5c253ac6519bda38c9f7a85a22701df2

See more details on using hashes here.

File details

Details for the file langchain_mistralai-0.1.6-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_mistralai-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 def19e2e28512a86cd73e8cacd43d11086d4be6b9187bf8702a7e3505d5fdd32
MD5 48e68ac3e9c4ac1cb75d400ca4f4d1cb
BLAKE2b-256 34612f00070647459184acaf8147ad112bbb3181795d85388612d6141df2475a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page