Skip to main content

An integration package connecting Mistral and LangChain

Project description

langchain-mistralai

This package contains the LangChain integrations for MistralAI through their mistralai SDK.

Installation

pip install -U langchain-mistralai

Chat Models

This package contains the ChatMistralAI class, which is the recommended way to interface with MistralAI models.

To use, install the requirements, and configure your environment.

export MISTRAL_API_KEY=your-api-key

Then initialize

from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI

chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)

ChatMistralAI also supports async and streaming functionality:

# For async...
await chat.ainvoke(messages)

# For streaming...
for chunk in chat.stream(messages):
    print(chunk.content, end="", flush=True)

Embeddings

With MistralAIEmbeddings, you can directly use the default model 'mistral-embed', or set a different one if available.

Choose model

embedding.model = 'mistral-embed'

Simple query

res_query = embedding.embed_query("The test information")

Documents

res_document = embedding.embed_documents(["test1", "another test"])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_mistralai-0.1.7.tar.gz (11.3 kB view details)

Uploaded Source

Built Distribution

langchain_mistralai-0.1.7-py3-none-any.whl (12.2 kB view details)

Uploaded Python 3

File details

Details for the file langchain_mistralai-0.1.7.tar.gz.

File metadata

  • Download URL: langchain_mistralai-0.1.7.tar.gz
  • Upload date:
  • Size: 11.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for langchain_mistralai-0.1.7.tar.gz
Algorithm Hash digest
SHA256 44d3fb15ab10b5a04a2cc544d1292af3f884288a59de08a8d7bdd74ce50ddf75
MD5 20f76a05ea29a1a0d42899f8f6c7fd0c
BLAKE2b-256 627a7f38b425acf9d3b008e12c48078f514dc960b48808b058cffa15b81caeaf

See more details on using hashes here.

File details

Details for the file langchain_mistralai-0.1.7-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_mistralai-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 4ab08ebafc5398767dbc4d6d371f4f2bc0974b01b02cb0ee71d351871a370479
MD5 e54a0a09f0028a200267be1c2de1d577
BLAKE2b-256 fdb65afe1589e2e3e368ec9babc47551148069f732fbd2a461294ec0314ec429

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page