Skip to main content

An integration package connecting Mistral and LangChain

Project description

langchain-mistralai

This package contains the LangChain integrations for MistralAI through their mistralai SDK.

Installation

pip install -U langchain-mistralai

Chat Models

This package contains the ChatMistralAI class, which is the recommended way to interface with MistralAI models.

To use, install the requirements, and configure your environment.

export MISTRAL_API_KEY=your-api-key

Then initialize

from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI

chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)

ChatMistralAI also supports async and streaming functionality:

# For async...
await chat.ainvoke(messages)

# For streaming...
for chunk in chat.stream(messages):
    print(chunk.content, end="", flush=True)

Embeddings

With MistralAIEmbeddings, you can directly use the default model 'mistral-embed', or set a different one if available.

Choose model

embedding.model = 'mistral-embed'

Simple query

res_query = embedding.embed_query("The test information")

Documents

res_document = embedding.embed_documents(["test1", "another test"])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_mistralai-0.1.9.tar.gz (12.2 kB view details)

Uploaded Source

Built Distribution

langchain_mistralai-0.1.9-py3-none-any.whl (13.2 kB view details)

Uploaded Python 3

File details

Details for the file langchain_mistralai-0.1.9.tar.gz.

File metadata

  • Download URL: langchain_mistralai-0.1.9.tar.gz
  • Upload date:
  • Size: 12.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for langchain_mistralai-0.1.9.tar.gz
Algorithm Hash digest
SHA256 aba9547f7a9cd45597fc5306068212ddf90db5b941c4541fcee8b6e5e2a3e980
MD5 c3e8609591a0516ad790957751d2c3b9
BLAKE2b-256 04c73e2f6965d7c4cc3c3ae4614b2aaf7566dec6baa459bd51b49badfd132bd0

See more details on using hashes here.

File details

Details for the file langchain_mistralai-0.1.9-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_mistralai-0.1.9-py3-none-any.whl
Algorithm Hash digest
SHA256 f134b60f489b8682dc79bc224a304a6a26d7f15253f8ef8e3d858707b431f238
MD5 ba49062465d3da11ff6888efb272aadb
BLAKE2b-256 d9841fa43610be68b4b7ef9dc319bebee24efd53f5bb80a7459c357624369d6d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page