Skip to main content

An integration package connecting Mistral and LangChain

Project description

langchain-mistralai

This package contains the LangChain integrations for MistralAI through their mistralai SDK.

Installation

pip install -U langchain-mistralai

Chat Models

This package contains the ChatMistralAI class, which is the recommended way to interface with MistralAI models.

To use, install the requirements, and configure your environment.

export MISTRAL_API_KEY=your-api-key

Then initialize

from langchain_core.messages import HumanMessage
from langchain_mistralai.chat_models import ChatMistralAI

chat = ChatMistralAI(model="mistral-small")
messages = [HumanMessage(content="say a brief hello")]
chat.invoke(messages)

ChatMistralAI also supports async and streaming functionality:

# For async...
await chat.ainvoke(messages)

# For streaming...
for chunk in chat.stream(messages):
    print(chunk.content, end="", flush=True)

Embeddings

With MistralAIEmbeddings, you can directly use the default model 'mistral-embed', or set a different one if available.

Choose model

embedding.model = 'mistral-embed'

Simple query

res_query = embedding.embed_query("The test information")

Documents

res_document = embedding.embed_documents(["test1", "another test"])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_mistralai-0.2.0.tar.gz (13.9 kB view details)

Uploaded Source

Built Distribution

langchain_mistralai-0.2.0-py3-none-any.whl (14.8 kB view details)

Uploaded Python 3

File details

Details for the file langchain_mistralai-0.2.0.tar.gz.

File metadata

  • Download URL: langchain_mistralai-0.2.0.tar.gz
  • Upload date:
  • Size: 13.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for langchain_mistralai-0.2.0.tar.gz
Algorithm Hash digest
SHA256 f89ebec41daae18871c5820cf7105afb05333a23e9ee7b3199d9a8ecdbe30a97
MD5 0bd2fc8d29b8d01753f8d33c505565ac
BLAKE2b-256 ea3a426987a2a31543a67c3f1a057ae0d24edf5d53272888f778920ceb3c40fe

See more details on using hashes here.

File details

Details for the file langchain_mistralai-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_mistralai-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1463093815f018d3a5860b4a41db25103235a12112e2c1e93c7576d09eee6382
MD5 bdf475707b1a1b1d72e7dfb0a69ebfdc
BLAKE2b-256 e6e7b214d783dc2b634cee5f9b3339258693e7dc4e0e1bfe82a5710465124add

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page