Skip to main content

An integration package connecting Postgres and LangChain

Project description

langchain-postgres

Release Notes CI License: MIT Twitter Open Issues

The langchain-postgres package implementations of core LangChain abstractions using Postgres.

The package is released under the MIT license.

Feel free to use the abstraction as provided or else modify them / extend them as appropriate for your own application.

Requirements

The package currently only supports the psycogp3 driver.

Installation

pip install -U langchain-postgres

Change Log

0.0.6:

  • Remove langgraph as a dependency as it was causing dependency conflicts.
  • Base interface for checkpointer changed in langgraph, so existing implementation would've broken regardless.

Usage

ChatMessageHistory

The chat message history abstraction helps to persist chat message history in a postgres table.

PostgresChatMessageHistory is parameterized using a table_name and a session_id.

The table_name is the name of the table in the database where the chat messages will be stored.

The session_id is a unique identifier for the chat session. It can be assigned by the caller using uuid.uuid4().

import uuid

from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_postgres import PostgresChatMessageHistory
import psycopg

# Establish a synchronous connection to the database
# (or use psycopg.AsyncConnection for async)
conn_info = ... # Fill in with your connection info
sync_connection = psycopg.connect(conn_info)

# Create the table schema (only needs to be done once)
table_name = "chat_history"
PostgresChatMessageHistory.create_tables(sync_connection, table_name)

session_id = str(uuid.uuid4())

# Initialize the chat history manager
chat_history = PostgresChatMessageHistory(
    table_name,
    session_id,
    sync_connection=sync_connection
)

# Add messages to the chat history
chat_history.add_messages([
    SystemMessage(content="Meow"),
    AIMessage(content="woof"),
    HumanMessage(content="bark"),
])

print(chat_history.messages)

Vectorstore

See example for the PGVector vectorstore here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain_postgres-0.0.9.tar.gz (21.4 kB view details)

Uploaded Source

Built Distribution

langchain_postgres-0.0.9-py3-none-any.whl (21.9 kB view details)

Uploaded Python 3

File details

Details for the file langchain_postgres-0.0.9.tar.gz.

File metadata

  • Download URL: langchain_postgres-0.0.9.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for langchain_postgres-0.0.9.tar.gz
Algorithm Hash digest
SHA256 f68e1981e79f2130ae34053683b90eea63335d7ef451db3f870a36b48d5675ab
MD5 3b46586eef9625e62cc7676588a80083
BLAKE2b-256 d1c7dca955c673aaf56f638a95b8c3800eb10c7d93f174d5cda8f8cd1d73d09b

See more details on using hashes here.

File details

Details for the file langchain_postgres-0.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for langchain_postgres-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 efbd8afbb7cc810fa6dfa87dd269e466c70d9af9f74aececcf47893e4b51535e
MD5 2a3f33ac6791d24439e3f83f4367569f
BLAKE2b-256 a54db5ba4dad0b0a110b984d5790cc69a2879a2891240ffdea9a6c94db213b46

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page