An integration package connecting Qdrant and LangChain
Project description
langchain-qdrant
This package contains the LangChain integration with Qdrant.
Installation
pip install -U langchain-qdrant
Usage
The Qdrant
class exposes the connection to the Qdrant vector store.
from langchain_qdrant import Qdrant
embeddings = ... # use a LangChain Embeddings class
vectorstore = Qdrant.from_existing_collection(
embeddings=embeddings,
collection_name="<COLLECTION_NAME>",
url="http://localhost:6333",
)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
langchain_qdrant-0.1.3.tar.gz
(20.4 kB
view details)
Built Distribution
File details
Details for the file langchain_qdrant-0.1.3.tar.gz
.
File metadata
- Download URL: langchain_qdrant-0.1.3.tar.gz
- Upload date:
- Size: 20.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d042def8fa445c0e1f7f233b8be9e7082afa92260626d75b9e71bc5ed98d7de |
|
MD5 | 861c7742fa4d5e9d5fc5e5e4f7ca4cb2 |
|
BLAKE2b-256 | 155a966c1474f8ea320db39e09ff47707fa230f294f5dd294291e290bc73242c |
File details
Details for the file langchain_qdrant-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: langchain_qdrant-0.1.3-py3-none-any.whl
- Upload date:
- Size: 22.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.0 CPython/3.12.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b4f820fcf3daa53efa3c9e600a3dfe68417410e458dd1bb74c2f811230b80e3e |
|
MD5 | 079d82ca4a4ccb2e46dbc66783dd1125 |
|
BLAKE2b-256 | 39d77b7849cfb12182c3dff972accaf1105863cc1254298c1acd9800ddcf8e4d |