Skip to main content

Building applications with LLMs through composability

Project description

🦜️🔗 LangChain

⚡ Building applications with LLMs through composability ⚡

lint test License: MIT Twitter

Quick Install

pip install langchain

🤔 What is this?

Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. But using these LLMs in isolation is often not enough to create a truly powerful app - the real power comes when you are able to combine them with other sources of computation or knowledge.

This library is aimed at assisting in the development of those types of applications. It aims to create:

  1. a comprehensive collection of pieces you would ever want to combine
  2. a flexible interface for combining pieces into a single comprehensive "chain"
  3. a schema for easily saving and sharing those chains

📖 Documentation

Please see here for full documentation on:

  • Getting started (installation, setting up environment, simple examples)
  • How-To examples (demos, integrations, helper functions)
  • Reference (full API docs)
  • Resources (high level explanation of core concepts)

🚀 What can I do with this

This project was largely inspired by a few projects seen on Twitter for which we thought it would make sense to have more explicit tooling. A lot of the initial functionality was done in an attempt to recreate those. Those are:

Self-ask-with-search

To recreate this paper, use the following code snippet or checkout the example notebook.

from langchain import SelfAskWithSearchChain, OpenAI, SerpAPIChain

llm = OpenAI(temperature=0)
search = SerpAPIChain()

self_ask_with_search = SelfAskWithSearchChain(llm=llm, search_chain=search)

self_ask_with_search.run("What is the hometown of the reigning men's U.S. Open champion?")

LLM Math

To recreate this example, use the following code snippet or check out the example notebook.

from langchain import OpenAI, LLMMathChain

llm = OpenAI(temperature=0)
llm_math = LLMMathChain(llm=llm)

llm_math.run("How many of the integers between 0 and 99 inclusive are divisible by 8?")

Generic Prompting

You can also use this for simple prompting pipelines, as in the below example and this example notebook.

from langchain import Prompt, OpenAI, LLMChain

template = """Question: {question}

Answer: Let's think step by step."""
prompt = Prompt(template=template, input_variables=["question"])
llm = OpenAI(temperature=0)
llm_chain = LLMChain(prompt=prompt, llm=llm)

question = "What NFL team won the Super Bowl in the year Justin Bieber was born?"

llm_chain.predict(question=question)

Embed & Search Documents

We support two vector databases to store and search embeddings -- FAISS and Elasticsearch. Here's a code snippet showing how to use FAISS to store embeddings and search for text similar to a query. Both database backends are featured in this example notebook.

from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.faiss import FAISS
from langchain.text_splitter import CharacterTextSplitter

with open('state_of_the_union.txt') as f:
    state_of_the_union = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(state_of_the_union)

embeddings = OpenAIEmbeddings()

docsearch = FAISS.from_texts(texts, embeddings)

query = "What did the president say about Ketanji Brown Jackson"
docs = docsearch.similarity_search(query)

🤖 Developer Guide

To begin developing on this project, first clone to the repo locally. To install requirements, run pip install -r requirements.txt. This will install all requirements for running the package, examples, linting, formatting, and tests.

Formatting for this project is a combination of Black and isort. To run formatting for this project, run make format.

Linting for this project is a combination of Black, isort, flake8, and mypy. To run linting for this project, run make lint. We recognize linting can be annoying - if you do not want to do it, please contact a project maintainer and they can help you with it. We do not want this to be a blocker for good code getting contributed.

Unit tests cover modular logic that does not require calls to outside apis. To run unit tests, run make tests. If you add new logic, please add a unit test.

Integration tests cover logic that requires making calls to outside APIs (often integration with other services). To run integration tests, run make integration_tests. If you add support for a new external API, please add a new integration test.

If you are adding a Jupyter notebook example, you can run pip install -e . to build the langchain package from your local changes, so your new logic can be imported into the notebook.

Docs are largely autogenerated by sphinx from the code. For that reason, we ask that you add good documentation to all classes and methods. Similar to linting, we recognize documentation can be annoying - if you do not want to do it, please contact a project maintainer and they can help you with it. We do not want this to be a blocker for good code getting contributed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain-0.0.14.tar.gz (49.1 kB view details)

Uploaded Source

Built Distribution

langchain-0.0.14-py3-none-any.whl (88.5 kB view details)

Uploaded Python 3

File details

Details for the file langchain-0.0.14.tar.gz.

File metadata

  • Download URL: langchain-0.0.14.tar.gz
  • Upload date:
  • Size: 49.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.6

File hashes

Hashes for langchain-0.0.14.tar.gz
Algorithm Hash digest
SHA256 4edbb99084fb0988584624710ef86bc34a8cfa74789539dc7d2a8f725482fe9e
MD5 15577e67d9eba6d7ab0fd672a8a5eabc
BLAKE2b-256 413297e2c50281fecb4701155f4ca2347be29cb0af986636b88b93a038e9ed41

See more details on using hashes here.

File details

Details for the file langchain-0.0.14-py3-none-any.whl.

File metadata

  • Download URL: langchain-0.0.14-py3-none-any.whl
  • Upload date:
  • Size: 88.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.6

File hashes

Hashes for langchain-0.0.14-py3-none-any.whl
Algorithm Hash digest
SHA256 cbd913423a80500a17d2a556a89303ad188e8a1a7717233c1278e480527fbe9a
MD5 5738fdd8cc027ad34a272c3f9b105038
BLAKE2b-256 506d73b8c983f0239184cf0f430faa1f0fffef751bc0a2ae97bb37760d44ea65

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page