Skip to main content

Building applications with LLMs through composability

Project description

🦜️🔗 LangChain

⚡ Building applications with LLMs through composability ⚡

lint test linkcheck Downloads License: MIT Twitter Open in Dev Containers Open in GitHub Codespaces

Looking for the JS/TS version? Check out LangChain.js.

Production Support: As you move your LangChains into production, we'd love to offer more comprehensive support. Please fill out this form and we'll set up a dedicated support Slack channel.

Quick Install

pip install langchain or conda install langchain -c conda-forge

🤔 What is this?

Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.

This library aims to assist in the development of those types of applications. Common examples of these applications include:

❓ Question Answering over specific documents

💬 Chatbots

🤖 Agents

📖 Documentation

Please see here for full documentation on:

  • Getting started (installation, setting up the environment, simple examples)
  • How-To examples (demos, integrations, helper functions)
  • Reference (full API docs)
  • Resources (high-level explanation of core concepts)

🚀 What can this help with?

There are six main areas that LangChain is designed to help with. These are, in increasing order of complexity:

📃 LLMs and Prompts:

This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.

🔗 Chains:

Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.

📚 Data Augmented Generation:

Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.

🤖 Agents:

Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.

🧠 Memory:

Memory refers to persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.

🧐 Evaluation:

[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.

For more information on these concepts, please see our full documentation.

💁 Contributing

As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.

For detailed information on how to contribute, see here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain-0.0.161.tar.gz (467.6 kB view details)

Uploaded Source

Built Distribution

langchain-0.0.161-py3-none-any.whl (759.0 kB view details)

Uploaded Python 3

File details

Details for the file langchain-0.0.161.tar.gz.

File metadata

  • Download URL: langchain-0.0.161.tar.gz
  • Upload date:
  • Size: 467.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.15.0-1036-azure

File hashes

Hashes for langchain-0.0.161.tar.gz
Algorithm Hash digest
SHA256 d05aaaee3e520f3993739adacbb926021de666a22620b1ece6b3f9065f35ae31
MD5 64f64f458819f45fe587f96ab7c9256a
BLAKE2b-256 8e194b0234a5dc3e150f9c3b29976c99d2b4685509ffd924a9e5fa77f442e9e2

See more details on using hashes here.

File details

Details for the file langchain-0.0.161-py3-none-any.whl.

File metadata

  • Download URL: langchain-0.0.161-py3-none-any.whl
  • Upload date:
  • Size: 759.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.15.0-1036-azure

File hashes

Hashes for langchain-0.0.161-py3-none-any.whl
Algorithm Hash digest
SHA256 b4f3a52d971c47268b3c44bf9dd2981836151e12c9d9cb0a11e7d2a07688e032
MD5 8dd893eacf0e8a018798ea9911fb7966
BLAKE2b-256 822b01aedbc20178eadb098cb70a55840fa12df99fecf15a9c40787b8e85634b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page