Skip to main content

Building applications with LLMs through composability

Project description

🦜️🔗 LangChain

⚡ Building applications with LLMs through composability ⚡

lint test linkcheck Downloads License: MIT Twitter Open in Dev Containers Open in GitHub Codespaces GitHub star chart

Looking for the JS/TS version? Check out LangChain.js.

Production Support: As you move your LangChains into production, we'd love to offer more comprehensive support. Please fill out this form and we'll set up a dedicated support Slack channel.

Quick Install

pip install langchain or conda install langchain -c conda-forge

🤔 What is this?

Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.

This library aims to assist in the development of those types of applications. Common examples of these applications include:

❓ Question Answering over specific documents

💬 Chatbots

🤖 Agents

📖 Documentation

Please see here for full documentation on:

  • Getting started (installation, setting up the environment, simple examples)
  • How-To examples (demos, integrations, helper functions)
  • Reference (full API docs)
  • Resources (high-level explanation of core concepts)

🚀 What can this help with?

There are six main areas that LangChain is designed to help with. These are, in increasing order of complexity:

📃 LLMs and Prompts:

This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.

🔗 Chains:

Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.

📚 Data Augmented Generation:

Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.

🤖 Agents:

Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.

🧠 Memory:

Memory refers to persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.

🧐 Evaluation:

[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.

For more information on these concepts, please see our full documentation.

💁 Contributing

As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.

For detailed information on how to contribute, see here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain-0.0.179.tar.gz (564.5 kB view details)

Uploaded Source

Built Distribution

langchain-0.0.179-py3-none-any.whl (907.7 kB view details)

Uploaded Python 3

File details

Details for the file langchain-0.0.179.tar.gz.

File metadata

  • Download URL: langchain-0.0.179.tar.gz
  • Upload date:
  • Size: 564.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.15.0-1037-azure

File hashes

Hashes for langchain-0.0.179.tar.gz
Algorithm Hash digest
SHA256 9c1ddddf4b24f5c0f981625dd248cf61bcfda7c1ebecf7d780fedd9b36bbc5ae
MD5 874ee98ad0a77b6c65ab7703ec912ebd
BLAKE2b-256 b6104ef1717d2fabaecece9b7a2d4ef138adecc854f8aaabfc187f475797f9cb

See more details on using hashes here.

File details

Details for the file langchain-0.0.179-py3-none-any.whl.

File metadata

  • Download URL: langchain-0.0.179-py3-none-any.whl
  • Upload date:
  • Size: 907.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.15.0-1037-azure

File hashes

Hashes for langchain-0.0.179-py3-none-any.whl
Algorithm Hash digest
SHA256 1af609e32d9297413ca7162efa97f001c8d87217533d3b5ca7cb87b44ddddf35
MD5 d5902e4da610338be476618f8eaab52b
BLAKE2b-256 d03779da7c1670a129fb4ef15bd14248f1bcf1530a9b18d0fc95dfdc9ee9899e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page