Skip to main content

Building applications with LLMs through composability

Project description

🦜️🔗 LangChain

⚡ Building applications with LLMs through composability ⚡

Release Notes lint test linkcheck Downloads License: MIT Twitter Open in Dev Containers Open in GitHub Codespaces GitHub star chart Dependency Status Open Issues

Looking for the JS/TS version? Check out LangChain.js.

Production Support: As you move your LangChains into production, we'd love to offer more comprehensive support. Please fill out this form and we'll set up a dedicated support Slack channel.

Quick Install

pip install langchain or conda install langchain -c conda-forge

🤔 What is this?

Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.

This library aims to assist in the development of those types of applications. Common examples of these applications include:

❓ Question Answering over specific documents

💬 Chatbots

🤖 Agents

📖 Documentation

Please see here for full documentation on:

  • Getting started (installation, setting up the environment, simple examples)
  • How-To examples (demos, integrations, helper functions)
  • Reference (full API docs)
  • Resources (high-level explanation of core concepts)

🚀 What can this help with?

There are six main areas that LangChain is designed to help with. These are, in increasing order of complexity:

📃 LLMs and Prompts:

This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.

🔗 Chains:

Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.

📚 Data Augmented Generation:

Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.

🤖 Agents:

Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.

🧠 Memory:

Memory refers to persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.

🧐 Evaluation:

[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.

For more information on these concepts, please see our full documentation.

💁 Contributing

As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.

For detailed information on how to contribute, see here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain-0.0.192.tar.gz (622.5 kB view details)

Uploaded Source

Built Distribution

langchain-0.0.192-py3-none-any.whl (990.0 kB view details)

Uploaded Python 3

File details

Details for the file langchain-0.0.192.tar.gz.

File metadata

  • Download URL: langchain-0.0.192.tar.gz
  • Upload date:
  • Size: 622.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.15.0-1038-azure

File hashes

Hashes for langchain-0.0.192.tar.gz
Algorithm Hash digest
SHA256 fac9d1cca55d23388ba85ade503445af94ac92c9ba93025779b635e06697efb7
MD5 a6fd0694a6e19d14aea7006685231a2e
BLAKE2b-256 115f3e7fec1fdeb785fee95f546a9f5f708453e17feea1743d42d820638be9b8

See more details on using hashes here.

File details

Details for the file langchain-0.0.192-py3-none-any.whl.

File metadata

  • Download URL: langchain-0.0.192-py3-none-any.whl
  • Upload date:
  • Size: 990.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.15.0-1038-azure

File hashes

Hashes for langchain-0.0.192-py3-none-any.whl
Algorithm Hash digest
SHA256 1936149ce3567a89a36433579ccd317d3b4488bf9efc569c69eba3334fa1c672
MD5 a64b9b1c5d1587adc2e68f827cd85d5e
BLAKE2b-256 2f649ed59a62f3a0106ae45654b3161609903f761a3138b8ddf027660c475fed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page