Skip to main content

Building applications with LLMs through composability

Project description

🦜️🔗 LangChain

⚡ Building applications with LLMs through composability ⚡

Release Notes lint test Downloads License: MIT Twitter Open in Dev Containers Open in GitHub Codespaces GitHub star chart Dependency Status Open Issues

Looking for the JS/TS version? Check out LangChain.js.

Production Support: As you move your LangChains into production, we'd love to offer more comprehensive support. Please fill out this form and we'll set up a dedicated support Slack channel.

Quick Install

pip install langchain or pip install langsmith && conda install langchain -c conda-forge

🤔 What is this?

Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. However, using these LLMs in isolation is often insufficient for creating a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.

This library aims to assist in the development of those types of applications. Common examples of these applications include:

❓ Question Answering over specific documents

💬 Chatbots

🤖 Agents

📖 Documentation

Please see here for full documentation on:

  • Getting started (installation, setting up the environment, simple examples)
  • How-To examples (demos, integrations, helper functions)
  • Reference (full API docs)
  • Resources (high-level explanation of core concepts)

🚀 What can this help with?

There are six main areas that LangChain is designed to help with. These are, in increasing order of complexity:

📃 LLMs and Prompts:

This includes prompt management, prompt optimization, a generic interface for all LLMs, and common utilities for working with LLMs.

🔗 Chains:

Chains go beyond a single LLM call and involve sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.

📚 Data Augmented Generation:

Data Augmented Generation involves specific types of chains that first interact with an external data source to fetch data for use in the generation step. Examples include summarization of long pieces of text and question/answering over specific data sources.

🤖 Agents:

Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end-to-end agents.

🧠 Memory:

Memory refers to persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.

🧐 Evaluation:

[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.

For more information on these concepts, please see our full documentation.

💁 Contributing

As an open-source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infrastructure, or better documentation.

For detailed information on how to contribute, see here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain-0.0.240rc0.tar.gz (848.3 kB view details)

Uploaded Source

Built Distribution

langchain-0.0.240rc0-py3-none-any.whl (1.3 MB view details)

Uploaded Python 3

File details

Details for the file langchain-0.0.240rc0.tar.gz.

File metadata

  • Download URL: langchain-0.0.240rc0.tar.gz
  • Upload date:
  • Size: 848.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.15.0-1041-azure

File hashes

Hashes for langchain-0.0.240rc0.tar.gz
Algorithm Hash digest
SHA256 59a52b741983dd44d2f079e5e031652d94d100a8fb367b5862fa6d3c19bb2234
MD5 592df9b9123da543c132dc603619fb35
BLAKE2b-256 0a8a8b84ccd5f71decb51b72f390c61852d51a47088e0677a08d9a7379a57f55

See more details on using hashes here.

File details

Details for the file langchain-0.0.240rc0-py3-none-any.whl.

File metadata

  • Download URL: langchain-0.0.240rc0-py3-none-any.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.6 Linux/5.15.0-1041-azure

File hashes

Hashes for langchain-0.0.240rc0-py3-none-any.whl
Algorithm Hash digest
SHA256 0f99e0f3149f323b4a295ec3fee53fd78c53a66c7cd9a369366251e60189107a
MD5 932de8dbcd6f2369e00a8b388011b184
BLAKE2b-256 398e45b4dc11458a9d6f0a80bf0960e0c19b936f26538f082d24054908a7e06a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page