Skip to main content

Building applications with LLMs through composability

Project description

🦜️🔗 LangChain

⚡ Building applications with LLMs through composability ⚡

lint test linkcheck License: MIT Twitter

Quick Install

pip install langchain

🤔 What is this?

Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. But using these LLMs in isolation is often not enough to create a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.

This library is aimed at assisting in the development of those types of applications.

📖 Documentation

Please see here for full documentation on:

  • Getting started (installation, setting up the environment, simple examples)
  • How-To examples (demos, integrations, helper functions)
  • Reference (full API docs) Resources (high-level explanation of core concepts)

🚀 What can this help with?

There are six main areas that LangChain is designed to help with. These are, in increasing order of complexity:

📃 LLMs and Prompts:

This includes prompt management, prompt optimization, generic interface for all LLMs, and common utilities for working with LLMs.

🔗 Chains:

Chains go beyond just a single LLM call, and are sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.

📚 Data Augmented Generation:

Data Augmented Generation involves specific types of chains that first interact with an external datasource to fetch data to use in the generation step. Examples of this include summarization of long pieces of text and question/answering over specific data sources.

🤖 Agents:

Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end to end agents.

🧠 Memory:

Memory is the concept of persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.

🧐 Evaluation:

[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.

For more information on these concepts, please see our full documentation.

💁 Contributing

As an open source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infra, or better documentation.

For detailed information on how to contribute, see here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain-0.0.63.tar.gz (101.2 kB view details)

Uploaded Source

Built Distribution

langchain-0.0.63-py3-none-any.whl (167.5 kB view details)

Uploaded Python 3

File details

Details for the file langchain-0.0.63.tar.gz.

File metadata

  • Download URL: langchain-0.0.63.tar.gz
  • Upload date:
  • Size: 101.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for langchain-0.0.63.tar.gz
Algorithm Hash digest
SHA256 b3aae138c945bb4e5245129ea7d25ae6e5ab19a912d36a7e3d55380305b06cfb
MD5 58a2a345f20ca9c40606746c816f419e
BLAKE2b-256 be96b67e3be093d849ba297a8cd66cf1c4db5288e1ca55120ee8b98abc0ed167

See more details on using hashes here.

File details

Details for the file langchain-0.0.63-py3-none-any.whl.

File metadata

  • Download URL: langchain-0.0.63-py3-none-any.whl
  • Upload date:
  • Size: 167.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for langchain-0.0.63-py3-none-any.whl
Algorithm Hash digest
SHA256 8080418426ad6de315df247892641a90b49b94f4b46212b6daf7e9191a8c9938
MD5 38451a3fc1dcda88edf536e832b8088f
BLAKE2b-256 c8ae5885ed6de66b949222a2f16c97398061a417fce0ecf202840a6c0d307fbe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page