Skip to main content

Building applications with LLMs through composability

Project description

🦜️🔗 LangChain

⚡ Building applications with LLMs through composability ⚡

lint test linkcheck License: MIT Twitter

Quick Install

pip install langchain

🤔 What is this?

Large language models (LLMs) are emerging as a transformative technology, enabling developers to build applications that they previously could not. But using these LLMs in isolation is often not enough to create a truly powerful app - the real power comes when you can combine them with other sources of computation or knowledge.

This library is aimed at assisting in the development of those types of applications. Common examples of these types of applications include:

❓ Question Answering over specific documents

💬 Chatbots

🤖 Agents

📖 Documentation

Please see here for full documentation on:

  • Getting started (installation, setting up the environment, simple examples)
  • How-To examples (demos, integrations, helper functions)
  • Reference (full API docs) Resources (high-level explanation of core concepts)

🚀 What can this help with?

There are six main areas that LangChain is designed to help with. These are, in increasing order of complexity:

📃 LLMs and Prompts:

This includes prompt management, prompt optimization, generic interface for all LLMs, and common utilities for working with LLMs.

🔗 Chains:

Chains go beyond just a single LLM call, and are sequences of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.

📚 Data Augmented Generation:

Data Augmented Generation involves specific types of chains that first interact with an external datasource to fetch data to use in the generation step. Examples of this include summarization of long pieces of text and question/answering over specific data sources.

🤖 Agents:

Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end to end agents.

🧠 Memory:

Memory is the concept of persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.

🧐 Evaluation:

[BETA] Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.

For more information on these concepts, please see our full documentation.

💁 Contributing

As an open source project in a rapidly developing field, we are extremely open to contributions, whether it be in the form of a new feature, improved infra, or better documentation.

For detailed information on how to contribute, see here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langchain-0.0.72.tar.gz (112.8 kB view details)

Uploaded Source

Built Distribution

langchain-0.0.72-py3-none-any.whl (187.7 kB view details)

Uploaded Python 3

File details

Details for the file langchain-0.0.72.tar.gz.

File metadata

  • Download URL: langchain-0.0.72.tar.gz
  • Upload date:
  • Size: 112.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.10.6 Linux/5.15.0-1031-azure

File hashes

Hashes for langchain-0.0.72.tar.gz
Algorithm Hash digest
SHA256 74276eb3b9d602506e9b7fe3a1f8158b693244e066df5d7091dd4efa5b99a01d
MD5 4f5b460d0527afadea7b3503ebb007da
BLAKE2b-256 90e1c6e6c77445aecabe94580f03e47baa1b7e93041721aa0752d5323b878bd1

See more details on using hashes here.

File details

Details for the file langchain-0.0.72-py3-none-any.whl.

File metadata

  • Download URL: langchain-0.0.72-py3-none-any.whl
  • Upload date:
  • Size: 187.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.3.1 CPython/3.10.6 Linux/5.15.0-1031-azure

File hashes

Hashes for langchain-0.0.72-py3-none-any.whl
Algorithm Hash digest
SHA256 f886e47ecf0762a5591903a45fbdd33d9e13f046bcbee50e76effd6786b5404d
MD5 f32d64c7daf6ad848ed3ab8cd7162690
BLAKE2b-256 3c59a94d3653bc657d9008a4f8078a91b99cdef08cdf42c5dcb9328ec57e1d07

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page