Skip to main content

Library with a MongoDB implementation of LangGraph checkpoint saver.

Project description

LangGraph Checkpoint MongoDB

Implementation of LangGraph CheckpointSaver that uses MongoDB.

Usage

from langgraph.checkpoint.mongodb import MongoDBSaver

write_config = {"configurable": {"thread_id": "1", "checkpoint_ns": ""}}
read_config = {"configurable": {"thread_id": "1"}}

MONGODB_URI = "mongodb://localhost:27017"
DB_NAME = "checkpoint_example"

with MongoDBSaver.from_conn_string(MONGODB_URI, DB_NAME) as checkpointer:
    # call .setup() the first time you're using the checkpointer
    checkpointer.setup()
    checkpoint = {
        "v": 1,
        "ts": "2024-07-31T20:14:19.804150+00:00",
        "id": "1ef4f797-8335-6428-8001-8a1503f9b875",
        "channel_values": {
            "my_key": "meow",
            "node": "node"
        },
        "channel_versions": {
            "__start__": 2,
            "my_key": 3,
            "start:node": 3,
            "node": 3
        },
        "versions_seen": {
            "__input__": {},
            "__start__": {
            "__start__": 1
            },
            "node": {
            "start:node": 2
            }
        },
        "pending_sends": [],
    }

    # store checkpoint
    checkpointer.put(write_config, checkpoint, {}, {})

    # load checkpoint
    checkpointer.get(read_config)

    # list checkpoints
    list(checkpointer.list(read_config))

Async

from langgraph.checkpoint.pymongo import AsyncMongoDBSaver

async with AsyncMongoDBSaver.from_conn_string(MONGODB_URI) as checkpointer:
    checkpoint = {
        "v": 1,
        "ts": "2024-07-31T20:14:19.804150+00:00",
        "id": "1ef4f797-8335-6428-8001-8a1503f9b875",
        "channel_values": {
            "my_key": "meow",
            "node": "node"
        },
        "channel_versions": {
            "__start__": 2,
            "my_key": 3,
            "start:node": 3,
            "node": 3
        },
        "versions_seen": {
            "__input__": {},
            "__start__": {
            "__start__": 1
            },
            "node": {
            "start:node": 2
            }
        },
        "pending_sends": [],
    }

    # store checkpoint
    await checkpointer.aput(write_config, checkpoint, {}, {})

    # load checkpoint
    await checkpointer.aget(read_config)

    # list checkpoints
    [c async for c in checkpointer.alist(read_config)]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langgraph_checkpoint_mongodb-0.1.0a0.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file langgraph_checkpoint_mongodb-0.1.0a0.tar.gz.

File metadata

File hashes

Hashes for langgraph_checkpoint_mongodb-0.1.0a0.tar.gz
Algorithm Hash digest
SHA256 d14ba93edb5c6b23e6bb2350e1721d4a2465623ec76d70263a5c93ed0d55d742
MD5 b6bff220d005d38362757ecc801a863c
BLAKE2b-256 8bb8f5ed591d6f173eedbb4ad5bc8a9d6c63f884933408692038cd9e5e925bc3

See more details on using hashes here.

File details

Details for the file langgraph_checkpoint_mongodb-0.1.0a0-py3-none-any.whl.

File metadata

File hashes

Hashes for langgraph_checkpoint_mongodb-0.1.0a0-py3-none-any.whl
Algorithm Hash digest
SHA256 d5cfcddb67096dce930ddbfd12ca542a471f92da26fed00b22c7d371c595bb7f
MD5 75517f32bc1e5ac904f6b2d93c17dc90
BLAKE2b-256 5787ddc89adf9533473760ca954764f13b2bcc3b3cfc08fb94f821c98e4d0939

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page