Skip to main content

Library with a MongoDB implementation of LangGraph checkpoint saver.

Project description

LangGraph Checkpoint MongoDB

Implementation of LangGraph CheckpointSaver that uses MongoDB.

Usage

from langgraph.checkpoint.mongodb import MongoDBSaver

write_config = {"configurable": {"thread_id": "1", "checkpoint_ns": ""}}
read_config = {"configurable": {"thread_id": "1"}}

MONGODB_URI = "mongodb://localhost:27017"
DB_NAME = "checkpoint_example"

with MongoDBSaver.from_conn_string(MONGODB_URI, DB_NAME) as checkpointer:
    # call .setup() the first time you're using the checkpointer
    checkpointer.setup()
    checkpoint = {
        "v": 1,
        "ts": "2024-07-31T20:14:19.804150+00:00",
        "id": "1ef4f797-8335-6428-8001-8a1503f9b875",
        "channel_values": {
            "my_key": "meow",
            "node": "node"
        },
        "channel_versions": {
            "__start__": 2,
            "my_key": 3,
            "start:node": 3,
            "node": 3
        },
        "versions_seen": {
            "__input__": {},
            "__start__": {
            "__start__": 1
            },
            "node": {
            "start:node": 2
            }
        },
        "pending_sends": [],
    }

    # store checkpoint
    checkpointer.put(write_config, checkpoint, {}, {})

    # load checkpoint
    checkpointer.get(read_config)

    # list checkpoints
    list(checkpointer.list(read_config))

Async

from langgraph.checkpoint.pymongo import AsyncMongoDBSaver

async with AsyncMongoDBSaver.from_conn_string(MONGODB_URI) as checkpointer:
    checkpoint = {
        "v": 1,
        "ts": "2024-07-31T20:14:19.804150+00:00",
        "id": "1ef4f797-8335-6428-8001-8a1503f9b875",
        "channel_values": {
            "my_key": "meow",
            "node": "node"
        },
        "channel_versions": {
            "__start__": 2,
            "my_key": 3,
            "start:node": 3,
            "node": 3
        },
        "versions_seen": {
            "__input__": {},
            "__start__": {
            "__start__": 1
            },
            "node": {
            "start:node": 2
            }
        },
        "pending_sends": [],
    }

    # store checkpoint
    await checkpointer.aput(write_config, checkpoint, {}, {})

    # load checkpoint
    await checkpointer.aget(read_config)

    # list checkpoints
    [c async for c in checkpointer.alist(read_config)]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langgraph_checkpoint_mongodb-0.1.0a1.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file langgraph_checkpoint_mongodb-0.1.0a1.tar.gz.

File metadata

File hashes

Hashes for langgraph_checkpoint_mongodb-0.1.0a1.tar.gz
Algorithm Hash digest
SHA256 526ba407a4dda3295b62d2f8694ae3644bab8cb84f926a0198d83d43493fe14a
MD5 43b222c1cdc7e889c9fdcd02abefddf2
BLAKE2b-256 d210a50966c1305f0c6d24aa5cd052d22eaab1d396d7f5edf31ded85129fbd48

See more details on using hashes here.

File details

Details for the file langgraph_checkpoint_mongodb-0.1.0a1-py3-none-any.whl.

File metadata

File hashes

Hashes for langgraph_checkpoint_mongodb-0.1.0a1-py3-none-any.whl
Algorithm Hash digest
SHA256 23cd470ed6d6c50ddb7469f72cceed7f870d6b14489e7a5c8ad17a6633146b0f
MD5 7de5070d79730b7d1b22fc579f1dbd9b
BLAKE2b-256 e3a43fe49b3d44f072e8004c68e77c7af14dd96674a38fe892eff4cabc3ae833

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page