Skip to main content

No project description provided

Project description

LangServe 🦜️🔗

Overview

LangServe is a library that allows developers to host their Langchain runnables / call into them remotely from a runnable interface.

Examples

For more examples, see the examples directory.

Server

#!/usr/bin/env python
from fastapi import FastAPI
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatAnthropic, ChatOpenAI
from langserve import add_routes
from typing_extensions import TypedDict


app = FastAPI(
  title="LangChain Server",
  version="1.0",
  description="A simple api server using Langchain's Runnable interfaces",
)


# Serve Open AI and Anthropic models
LLMInput = Union[List[Union[SystemMessage, HumanMessage, str]], str]

add_routes(
    app,
    ChatOpenAI(),
    path="/openai",
    input_type=LLMInput,
    config_keys=[],
)
add_routes(
    app,
    ChatAnthropic(),
    path="/anthropic",
    input_type=LLMInput,
    config_keys=[],
)

# Serve a joke chain
class ChainInput(TypedDict):
    """The input to the chain."""

    topic: str
    """The topic of the joke."""

model = ChatAnthropic()
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
add_routes(app, prompt | model, path="/chain", input_type=ChainInput)

if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="localhost", port=8000)

Client

from langchain.schema import SystemMessage, HumanMessage
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnableMap
from langserve import RemoteRunnable

openai = RemoteRunnable("http://localhost:8000/openai/")
anthropic = RemoteRunnable("http://localhost:8000/anthropic/")
joke_chain = RemoteRunnable("http://localhost:8000/chain/")

joke_chain.invoke({"topic": "parrots"})

# or async
await joke_chain.ainvoke({"topic": "parrots"})

prompt = [
    SystemMessage(content='Act like either a cat or a parrot.'), 
    HumanMessage(content='Hello!')
]

# Supports astream
async for msg in anthropic.astream(prompt):
    print(msg, end="", flush=True)
    
prompt = ChatPromptTemplate.from_messages(
    [("system", "Tell me a long story about {topic}")]
)
    
# Can define custom chains
chain = prompt | RunnableMap({
    "openai": openai,
    "anthropic": anthropic,
})

chain.batch([{ "topic": "parrots" }, { "topic": "cats" }])

Installation

# pip install langserve[all] -- has not been published to pypi yet

or use client extra for client code, and server extra for server code.

Features

  • Deploy runnables with FastAPI
  • Client can use remote runnables almost as if they were local
    • Supports async
    • Supports batch
    • Supports stream

Limitations

  • Chain callbacks cannot be passed from the client to the server

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langserve-0.0.2.tar.gz (11.0 kB view details)

Uploaded Source

Built Distribution

langserve-0.0.2-py3-none-any.whl (11.5 kB view details)

Uploaded Python 3

File details

Details for the file langserve-0.0.2.tar.gz.

File metadata

  • Download URL: langserve-0.0.2.tar.gz
  • Upload date:
  • Size: 11.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for langserve-0.0.2.tar.gz
Algorithm Hash digest
SHA256 5173da0a63d7652f90988532d58033f2e2b94f0ac9a492021787153da53b2945
MD5 60a8bd44054707f07998e02d6683f479
BLAKE2b-256 ba99c07f194ad1c53315df0b21b383b3222b940dc9f16286a7d4b079508c99f2

See more details on using hashes here.

File details

Details for the file langserve-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: langserve-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 11.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for langserve-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ee9310d4e745f945cbab494b117a66980dd05c6ccd8a12b150314846958c14c2
MD5 622e086f17313680f50052694d42ee2b
BLAKE2b-256 cefc5445bc4ba57dbe37d2b15a68573489d03a88fdd096ce49cd97fed719f15f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page