No project description provided
Project description
LangServe 🦜️🔗
Overview
LangServe
is a library that allows developers to host their Langchain runnables /
call into them remotely from a runnable interface.
Examples
For more examples, see the examples directory.
Server
#!/usr/bin/env python
from fastapi import FastAPI
from langchain.prompts import ChatPromptTemplate
from langchain.chat_models import ChatAnthropic, ChatOpenAI
from langserve import add_routes
from typing_extensions import TypedDict
app = FastAPI(
title="LangChain Server",
version="1.0",
description="A simple api server using Langchain's Runnable interfaces",
)
add_routes(
app,
ChatOpenAI(),
path="/openai",
config_keys=[],
)
add_routes(
app,
ChatAnthropic(),
path="/anthropic",
config_keys=[],
)
# Serve a joke chain
class ChainInput(TypedDict):
"""The input to the chain."""
topic: str
"""The topic of the joke."""
model = ChatAnthropic()
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
add_routes(app, prompt | model, path="/chain", input_type=ChainInput)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="localhost", port=8000)
Client
from langchain.schema import SystemMessage, HumanMessage
from langchain.prompts import ChatPromptTemplate
from langchain.schema.runnable import RunnableMap
from langserve import RemoteRunnable
openai = RemoteRunnable("http://localhost:8000/openai/")
anthropic = RemoteRunnable("http://localhost:8000/anthropic/")
joke_chain = RemoteRunnable("http://localhost:8000/chain/")
joke_chain.invoke({"topic": "parrots"})
# or async
await joke_chain.ainvoke({"topic": "parrots"})
prompt = [
SystemMessage(content='Act like either a cat or a parrot.'),
HumanMessage(content='Hello!')
]
# Supports astream
async for msg in anthropic.astream(prompt):
print(msg, end="", flush=True)
prompt = ChatPromptTemplate.from_messages(
[("system", "Tell me a long story about {topic}")]
)
# Can define custom chains
chain = prompt | RunnableMap({
"openai": openai,
"anthropic": anthropic,
})
chain.batch([{ "topic": "parrots" }, { "topic": "cats" }])
Installation
pip install langserve[all]
or use client
extra for client code, and server
extra for server code.
Features
- Deploy runnables with FastAPI
- Client can use remote runnables almost as if they were local
- Supports async
- Supports batch
- Supports stream
Limitations
- Chain callbacks cannot be passed from the client to the server
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
langserve-0.0.3.tar.gz
(10.8 kB
view details)
Built Distribution
langserve-0.0.3-py3-none-any.whl
(11.4 kB
view details)
File details
Details for the file langserve-0.0.3.tar.gz
.
File metadata
- Download URL: langserve-0.0.3.tar.gz
- Upload date:
- Size: 10.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 09507fe300b9a3e1beb83734092b5d440bd2e1f69ae56190f310b2e41ed3825f |
|
MD5 | d1d8265467414fc13b780bc52cddce86 |
|
BLAKE2b-256 | 6755399fc93dab6ef321e7824c485b7489c24068732664b4ec76a67bd21390a8 |
File details
Details for the file langserve-0.0.3-py3-none-any.whl
.
File metadata
- Download URL: langserve-0.0.3-py3-none-any.whl
- Upload date:
- Size: 11.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3b56cb11ea4ac3f84499f93a2240e6dd3903f8e8fc750a759c848fb4ae7c7f2f |
|
MD5 | f9fef10f15093d36770bc75490762668 |
|
BLAKE2b-256 | b096cb4b0f15356710bb216aed464ec1415081b26d8ace4448e24cdf99d10b07 |