Skip to main content

Client library to connect to the LangSmith LLM Tracing and Evaluation Platform.

Project description

LangSmith Client SDK

This package contains the Python client for interacting with the LangSmith platform.

To install:

pip install langsmith

LangSmith helps you and your team develop and evaluate language models and intelligent agents. It is compatible with any LLM Application and provides seamless integration with LangChain, a widely recognized open-source framework that simplifies the process for developers to create powerful language model applications.

Note: You can enjoy the benefits of LangSmith without using the LangChain open-source packages! To get started with your own proprietary framework, set up your account and then skip to Logging Traces Outside LangChain.

A typical workflow looks like:

  1. Set up an account with LangSmith or host your local server.
  2. Log traces.
  3. Debug, Create Datasets, and Evaluate Runs.

We'll walk through these steps in more detail below.

1. Connect to LangSmith

Sign up for LangSmith using your GitHub, Discord accounts, or an email address and password. If you sign up with an email, make sure to verify your email address before logging in.

Then, create a unique API key on the Settings Page, which is found in the menu at the top right corner of the page.

Note: Save the API Key in a secure location. It will not be shown again.

2. Log Traces

You can log traces natively in your LangChain application or using a LangSmith RunTree.

Logging Traces with LangChain

LangSmith seamlessly integrates with the Python LangChain library to record traces from your LLM applications.

  1. Copy the environment variables from the Settings Page and add them to your application.

Tracing can be activated by setting the following environment variables or by manually specifying the LangChainTracer.

import os
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.langchain.plus" # or your own server
os.environ["LANGCHAIN_API_KEY"] = "<YOUR-LANGCHAINPLUS-API-KEY>"
# os.environ["LANGCHAIN_PROJECT"] = "My Project Name" # Optional: "default" is used if not set

Tip: Projects are groups of traces. All runs are logged to a project. If not specified, the project is set to default.

  1. Run an Agent, Chain, or Language Model in LangChain

If the environment variables are correctly set, your application will automatically connect to the LangSmith platform.

from langchain.chat_models import ChatOpenAI

chat = ChatOpenAI()
response = chat.predict(
    "Translate this sentence from English to French. I love programming."
)
print(response)

Logging Traces Outside LangChain

Note: this API is experimental and may change in the future

You can still use the LangSmith development platform without depending on any LangChain code. You can connect either by setting the appropriate environment variables, or by directly specifying the connection information in the RunTree.

  1. Copy the environment variables from the Settings Page and add them to your application.
import os
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.langchain.plus" # or your own server
os.environ["LANGCHAIN_API_KEY"] = "<YOUR-LANGCHAINPLUS-API-KEY>"
# os.environ["LANGCHAIN_PROJECT"] = "My Project Name" # Optional: "default" is used if not set
  1. Log traces using a RunTree.

A RunTree tracks your application. Each RunTree object is required to have a name and run_type. These and other important attributes are as follows:

  • name: str - used to identify the component's purpose
  • run_type: str - Currently one of "llm", "chain" or "tool"; more options will be added in the future
  • inputs: dict - the inputs to the component
  • outputs: Optional[dict] - the (optional) returned values from the component
  • error: Optional[str] - Any error messages that may have arisen during the call
from langsmith.run_trees import RunTree

parent_run = RunTree(
    name="My Chat Bot",
    run_type="chain",
    inputs={"text": "Summarize this morning's meetings."},
    serialized={},  # Serialized representation of this chain
    # project_name= "Defaults to the LANGCHAIN_PROJECT env var"
    # api_url= "Defaults to the LANGCHAIN_ENDPOINT env var"
    # api_key= "Defaults to the LANGCHAIN_API_KEY env var"
)
# .. My Chat Bot calls an LLM
child_llm_run = parent_run.create_child(
    name="My Proprietary LLM",
    run_type="llm",
    inputs={
        "prompts": [
            "You are an AI Assistant. The time is XYZ."
            " Summarize this morning's meetings."
        ]
    },
)
child_llm_run.end(
    outputs={
        "generations": [
            "I should use the transcript_loader tool"
            " to fetch meeting_transcripts from XYZ"
        ]
    }
)
# ..  My Chat Bot takes the LLM output and calls
# a tool / function for fetching transcripts ..
child_tool_run = parent_run.create_child(
    name="transcript_loader",
    run_type="tool",
    inputs={"date": "XYZ", "content_type": "meeting_transcripts"},
)
# The tool returns meeting notes to the chat bot
child_tool_run.end(outputs={"meetings": ["Meeting1 notes.."]})

child_chain_run = parent_run.create_child(
    name="Unreliable Component",
    run_type="tool",
    inputs={"input": "Summarize these notes..."},
)

try:
    # .... the component does work
    raise ValueError("Something went wrong")
except Exception as e:
    child_chain_run.end(error=f"I errored again {e}")
    pass
# .. The chat agent recovers

parent_run.end(outputs={"output": ["The meeting notes are as follows:..."]})

# This posts all nested runs as a batch
res = parent_run.post(exclude_child_runs=False)
res.result()

Create a Dataset from Existing Runs

Once your runs are stored in LangSmith, you can convert them into a dataset. For this example, we will do so using the Client, but you can also do this using the web interface, as explained in the LangSmith docs.

from langsmith import Client

client = Client()
dataset_name = "Example Dataset"
# We will only use examples from the top level AgentExecutor run here,
# and exclude runs that errored.
runs = client.list_runs(
    project_name="my_project",
    execution_order=1,
    error=False,
)

dataset = client.create_dataset(dataset_name, description="An example dataset")
for run in runs:
    client.create_example(
        inputs=run.inputs,
        outputs=run.outputs,
        dataset_id=dataset.id,
    )

Evaluating Runs

You can run evaluations directly using the LangSmith client.

from typing import Optional
from langsmith.evaluation import StringEvaluator


def jaccard_chars(output: str, answer: str) -> float:
    """Naive Jaccard similarity between two strings."""
    prediction_chars = set(output.strip().lower())
    answer_chars = set(answer.strip().lower())
    intersection = prediction_chars.intersection(answer_chars)
    union = prediction_chars.union(answer_chars)
    return len(intersection) / len(union)


def grader(run_input: str, run_output: str, answer: Optional[str]) -> dict:
    """Compute the score and/or label for this run."""
    if answer is None:
        value = "AMBIGUOUS"
        score = 0.5
    else:
        score = jaccard_chars(run_output, answer)
        value = "CORRECT" if score > 0.9 else "INCORRECT"
    return dict(score=score, value=value)

evaluator = StringEvaluator(evaluation_name="Jaccard", grading_function=grader)

runs = client.list_runs(
    project_name="my_project",
    execution_order=1,
    error=False,
)
for run in runs:
    client.evaluate_run(run, evaluator)

Additional Documentation

To learn more about the LangSmith platform, check out the docs.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

langsmith-0.0.3.tar.gz (23.1 kB view details)

Uploaded Source

Built Distribution

langsmith-0.0.3-py3-none-any.whl (24.9 kB view details)

Uploaded Python 3

File details

Details for the file langsmith-0.0.3.tar.gz.

File metadata

  • Download URL: langsmith-0.0.3.tar.gz
  • Upload date:
  • Size: 23.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.11.2 Darwin/22.5.0

File hashes

Hashes for langsmith-0.0.3.tar.gz
Algorithm Hash digest
SHA256 c96a0b9ffbca8622b51e2ecf084f17ef90fc9a255d1a2625c35f883f8304adf4
MD5 0c55d411a130dc6790ce29be60741494
BLAKE2b-256 0b5591c382244521bbd2ee24558314e07f4d5ae2efa2e5b720704ef6a9a9c94b

See more details on using hashes here.

File details

Details for the file langsmith-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: langsmith-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 24.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.11.2 Darwin/22.5.0

File hashes

Hashes for langsmith-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 3de4edb8b7ee2402056ff148df8daeb2ed5b21226666f993bf6f193051473897
MD5 a0522fb0b76d3d88839068640b05e7cf
BLAKE2b-256 0700132348d87352d0dfcdeeef440d7b66029471ae2d6b969f87e8b9709d6260

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page