Skip to main content

No project description provided

Project description

LaTeCH-CLfL-2020

PyPI

Repository associated with History to Myths: Social Network Analysis for Comparison of Stories over Time paper.

Citation

@inproceedings{besnier-2020-history,
    title = "History to Myths: Social Network Analysis for Comparison of Stories over Time",
    author = "Besnier, Cl{\'e}ment",
    booktitle = "Proceedings of the The 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature",
    month = dec,
    year = "2020",
    address = "Online",
    publisher = "International Committee on Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.latechclfl-1.1",
    pages = "1--9",
    abstract = {We discuss on how related stories can be compared by their characters. We investigate character graphs, or social networks, in order to measure evolution of character importance over time. To illustrate this, we chose the Siegfried-Sigurd myth that may come from a Merovingian king named Sigiberthus. The Nibelungenlied, the V{\"o}lsunga saga and the History of the Franks are the three resources used.},
}

Data

Texts:

  • Decem libros historium (DLH) by Gregory of Tours
  • Nibelungenlied (NIB)
  • Völsunga saga (VOL)

DLH is the historical reference. NIB and VÖL are fiction works.

Installation

Tested on Windows 10 and Ubuntu 16.04. Tested with Python 3.7 and 3.8.

Install with pip

$ pip install latechclfl2020besnier

or download source

$ git clone https://github.com/clemsciences/LaTeCH-CLfl-2020-besnier.git
$ cd LaTeCH-CLfl-2020-besnier
$ virtualenv -p /usr/bin/python3 venv
$ source venv/bin/activate
$ pip install -r requirements.txt 

Reproducing results

  1. Download resources Run $ python -m -m latechclfl2020.models.initiate latechclfl2020/models/initiate.py
  2. Generating graphs. Run $ python -m latechclfl2020.models.scripts latechclfl2020/models/scripts.py
  3. Generating character feature table in paper. Run $ python -m latechclfl2020.models.reconstruction latechclfl2020/models/reconstruction.py
  4. Generating Brynhildr ego-graphs. Run $ python -m latechclfl2020.models.paper.graph_visualisation latechclfl2020/models/paper/graph_visualisation.py
  5. Corpus observation. Run $ python -m latechclfl2020.models.paper.corpus_observation latechclfl2020/models/paper/corpus_observation.py

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

latechclfl2020besnier-1.0.4.tar.gz (16.9 kB view details)

Uploaded Source

Built Distribution

latechclfl2020besnier-1.0.4-py3-none-any.whl (22.0 kB view details)

Uploaded Python 3

File details

Details for the file latechclfl2020besnier-1.0.4.tar.gz.

File metadata

  • Download URL: latechclfl2020besnier-1.0.4.tar.gz
  • Upload date:
  • Size: 16.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.24.0 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for latechclfl2020besnier-1.0.4.tar.gz
Algorithm Hash digest
SHA256 7498983d1671c14e0e9cfb89e55a5d05a00a0f6fa0cb1f1b4aeaef9f1b1149c6
MD5 979536cc7afed57be44d6098a72ec7f9
BLAKE2b-256 65478280822d4b09537768787c26cca2789f877d5eec611094ee9787535a59be

See more details on using hashes here.

File details

Details for the file latechclfl2020besnier-1.0.4-py3-none-any.whl.

File metadata

  • Download URL: latechclfl2020besnier-1.0.4-py3-none-any.whl
  • Upload date:
  • Size: 22.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.24.0 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for latechclfl2020besnier-1.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 27b96b81650dfb95c42ef8fcb8839becf74e1616b9a456b0fef64578bc33a367
MD5 d30c2abfbb88fea05d16fbb946ab0ba2
BLAKE2b-256 7a49d59bc91abaa59924fe16b14707cea8dc02e34300492f96e80ebc8080055f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page