Skip to main content

No project description provided

Project description

LaTeCH-CLfL-2020

PyPI

Repository associated with History to Myths: Social Network Analysis for Comparison of Stories over Time paper.

Citation

@inproceedings{besnier-2020-history,
    title = "History to Myths: Social Network Analysis for Comparison of Stories over Time",
    author = "Besnier, Cl{\'e}ment",
    booktitle = "Proceedings of the The 4th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature",
    month = dec,
    year = "2020",
    address = "Online",
    publisher = "International Committee on Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.latechclfl-1.1",
    pages = "1--9",
    abstract = {We discuss on how related stories can be compared by their characters. We investigate character graphs, or social networks, in order to measure evolution of character importance over time. To illustrate this, we chose the Siegfried-Sigurd myth that may come from a Merovingian king named Sigiberthus. The Nibelungenlied, the V{\"o}lsunga saga and the History of the Franks are the three resources used.},
}

Data

Texts:

  • Decem libros historium (DLH) by Gregory of Tours
  • Nibelungenlied (NIB)
  • Völsunga saga (VOL)

DLH is the historical reference. NIB and VÖL are fiction works.

Installation

Tested on Windows 10 and Ubuntu 16.04. Tested with Python 3.7 and 3.8.

Install with pip

$ pip install latechclfl2020besnier

or download source

$ git clone https://github.com/clemsciences/LaTeCH-CLfl-2020-besnier.git
$ cd LaTeCH-CLfl-2020-besnier
$ virtualenv -p /usr/bin/python3 venv
$ source venv/bin/activate
$ pip install -r requirements.txt 

Reproducing results

  1. Download resources Run $ python -m -m latechclfl2020.models.initiate latechclfl2020/models/initiate.py
  2. Generating graphs. Run $ python -m latechclfl2020.models.scripts latechclfl2020/models/scripts.py
  3. Generating character feature table in paper. Run $ python -m latechclfl2020.models.reconstruction latechclfl2020/models/reconstruction.py
  4. Generating Brynhildr ego-graphs. Run $ python -m latechclfl2020.models.paper.graph_visualisation latechclfl2020/models/paper/graph_visualisation.py
  5. Corpus observation. Run $ python -m latechclfl2020.models.paper.corpus_observation latechclfl2020/models/paper/corpus_observation.py

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

latechclfl2020besnier-1.0.5.tar.gz (16.9 kB view details)

Uploaded Source

Built Distribution

latechclfl2020besnier-1.0.5-py3-none-any.whl (22.0 kB view details)

Uploaded Python 3

File details

Details for the file latechclfl2020besnier-1.0.5.tar.gz.

File metadata

  • Download URL: latechclfl2020besnier-1.0.5.tar.gz
  • Upload date:
  • Size: 16.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.24.0 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for latechclfl2020besnier-1.0.5.tar.gz
Algorithm Hash digest
SHA256 130d575ce41c6087445b14e2e1ba70a9145ac10744b9304c912c9ae1b5a1c3b7
MD5 da97dad903ffe3612a01134965e5cc28
BLAKE2b-256 19e4267f52c209f352abd2315c55044c014326e73f7bc145e407ca412265f087

See more details on using hashes here.

File details

Details for the file latechclfl2020besnier-1.0.5-py3-none-any.whl.

File metadata

  • Download URL: latechclfl2020besnier-1.0.5-py3-none-any.whl
  • Upload date:
  • Size: 22.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.24.0 setuptools/51.3.3 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for latechclfl2020besnier-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b6c5bebd6cc14ed5e6dbcdd20e81da1a02843e250009ea53731c7fab91374812
MD5 9a4c5db7a224ee0bb8c6ec40ad6d9ec5
BLAKE2b-256 15a27d583ed628da762aac8e25e3d2052d29c091392b659657f897c62279d782

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page