Skip to main content

Read, stitch and compress Leica LAS MatrixS Screener experiments

Project description

build-status-image pypi-version wheel

Overview

This is a python module for interfacing with Leica LAS AF/X Matrix Screener experiments.

The module can be used to:

  • stitch wells from an experiment exported with the LAS AF Data Exporter

  • batch compress images lossless

  • programmatically select slides/wells/fields/images given by attributes like

    • slide (S)

    • well position (U, V)

    • field position (X, Y)

    • z-stack position (Z)

    • channel (C)

Features

  • Access experiment as a python object

  • Compress to PNGs without loosing precision, metadata or colormap

  • ImageJ stitching (Fiji is installed via fijibin)

Installation

Install using pip

pip install leicaexperiment

Examples

stitch experiment

from leicaexperiment import Experiment

# path should contain AditionalData and slide--S*
experiment = Experiment('path/to/experiment')

# if path is omitted, experiment path is used for output files
stitched_images = experiment.stitch('/path/to/output/files/')

stitch specific well

from leicaexperiment import Experiment

# path should contain AditionalData and slide--S*
stitched_images = experiment.stitch('/path/to/well')

do stuff on all images

from leicaexperiment import Experiment

experiment = Experiment('path/to/experiment--')

for image in experiment.images:
    do stuff...

do stuff on specific wells/fields

from leicaexperiment import attribute

# select specific parts
selected_wells = [well for well in experiment.wells if 'U00' in well]
for well in selected_wells:
    do stuff...

def condition(path):
    x_above = attribute(path, 'X') > 1
    x_below = attribute(path, 'X') < 5
    return x_above and x_below

selected_fields = [field for field in experiment.fields if condition(field)]
for field in selected_fields:
    do stuff..

subtract data

from leicaexperiment import attribute

# get all channels
channels = [attribute(image, 'C') for image in experiment.images]
min_ch, max_ch = min(channels), max(channels)

batch lossless compress of experiment

from leicaexperiment import Experiment, compress

e = Experiment('/path/to/experiment')
pngs = compress(e.images)
print(pngs)

API reference

API reference is at http://leicaexperiment.rtfd.org.

Development

Install dependencies and link development version of leicaexperiment to pip:

git clone https://github.com/arve0/leicaexperiment
cd leicaexperiment
pip install -r dev-requirements.txt
./setup.py develop

run test

tox

extra output, jump into pdb upon error

DEBUG=leicaexperiment tox -- --pdb -s

Build documentation locally

make docs

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

leicaexperiment-0.0.1.tar.gz (9.2 kB view details)

Uploaded Source

Built Distribution

leicaexperiment-0.0.1-py2.py3-none-any.whl (10.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file leicaexperiment-0.0.1.tar.gz.

File metadata

File hashes

Hashes for leicaexperiment-0.0.1.tar.gz
Algorithm Hash digest
SHA256 d96e5ca25919428d67b9f95f9bc92c172479c27a3e027b60c2871948f7046dd4
MD5 d74127e38eaeb33700d341cc1438608a
BLAKE2b-256 d9d73bc87f6a22fb491c2d8d6518077ed803dee359de58c3f6cf2d6e046d3601

See more details on using hashes here.

File details

Details for the file leicaexperiment-0.0.1-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for leicaexperiment-0.0.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 30209e54978874f808350c5d63b197fd9ce70e16b9f2b42a8f503c03bf7b1eb1
MD5 a43486aec75f817d16dc35e9455eb2be
BLAKE2b-256 7163062a665e6eb7099861bfb8149e172df065515841d30f86e0ebaa3655307a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page