Skip to main content

Read, stitch and compress Leica LAS Matrix Screener experiments

Project description

build-status-image pypi-version wheel

Overview

This is a python module for interfacing with Leica LAS AF/X Matrix Screener experiments.

The module can be used to:

  • stitch wells from an experiment exported with the LAS AF Data Exporter

  • batch compress images lossless

  • programmatically select slides/wells/fields/images given by attributes like

    • slide (S)

    • well position (U, V)

    • field position (X, Y)

    • z-stack position (Z)

    • channel (C)

Features

  • Access experiment as a python object

  • Compress to PNGs without loosing precision, metadata or colormap

  • ImageJ stitching (Fiji is installed via fijibin)

Installation

Install using pip

pip install leicaexperiment

Examples

stitch experiment

from leicaexperiment import Experiment

# path should contain AditionalData and slide--S*
experiment = Experiment('path/to/experiment')

# if path is omitted, experiment path is used for output files
stitched_images = experiment.stitch('/path/to/output/files/')

# get information about placement of images in the stitch
xs, ys, attrs = experiment.stitch_coordinates(well_x=0, well_y=0)

stitch specific well

from leicaexperiment import Experiment

# path should contain AditionalData and slide--S*
stitched_images = experiment.stitch('/path/to/well')

do stuff on all images

from leicaexperiment import Experiment

experiment = Experiment('path/to/experiment--')

for image in experiment.images:
    do stuff...

do stuff on specific wells/fields

from leicaexperiment import attribute

# select specific parts
selected_wells = [well for well in experiment.wells if 'U00' in well]
for well in selected_wells:
    do stuff...

def condition(path):
    x_above = attribute(path, 'X') > 1
    x_below = attribute(path, 'X') < 5
    return x_above and x_below

selected_fields = [field for field in experiment.fields if condition(field)]
for field in selected_fields:
    do stuff..

subtract data

from leicaexperiment import attribute

# get all channels
channels = [attribute(image, 'C') for image in experiment.images]
min_ch, max_ch = min(channels), max(channels)

batch lossless compress of experiment

from leicaexperiment import Experiment, compress

e = Experiment('/path/to/experiment')
pngs = compress(e.images)
print(pngs)

API reference

API reference is at http://leicaexperiment.rtfd.org.

Development

Install dependencies and link development version of leicaexperiment to pip:

git clone https://github.com/arve0/leicaexperiment
cd leicaexperiment
pip install -r requirements.txt

run test

pip install tox
tox

extra output, jump into pdb upon error

DEBUG=leicaexperiment tox -- --pdb -s

build api reference

make docs

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

leicaexperiment-0.1.1.tar.gz (9.4 kB view details)

Uploaded Source

File details

Details for the file leicaexperiment-0.1.1.tar.gz.

File metadata

File hashes

Hashes for leicaexperiment-0.1.1.tar.gz
Algorithm Hash digest
SHA256 a75ac3c61254fee42f738a988e57748d89fa5bcf2266dbe3b54269a2ad5f39d9
MD5 a4dff0166ff6fc99a2ee1f125f4770c0
BLAKE2b-256 455e8a2dc24ae0cab3d9425270865a622d940cd90b905702304fb5884f1effd9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page