Skip to main content

Variable width build numbers with lexical ordering.

Project description

lexid

lexid is a micro library to increment lexically ordered numerical ids.

Throughout the sequence of ids, this expression will always be true, whether you are dealing with integers or strings:

older_id < newer_id

The left most character/digit is only used to maintain lexical order, so that the position in the sequence is maintained in the remaining digits.

Such ids can be useful as build or version numbers, which are often displayed by tooling which does not understand their correct ordering.

Project/Repo:

MIT License Supported Python Versions CalVer 2020.1005 PyPI Version PyPI Downloads

Code Quality/CI:

GitHub CI Status GitLab CI Status Type Checked with mypy Code Coverage Code Style: sjfmt

Name role since until
Manuel Barkhau (mbarkhau@gmail.com) author/maintainer 2020-09 -

Usage

$ pip install lexid
$ lexid_incr 1001
1002
$ lexid_incr 1999
22000
$ lexid_incr 1
22
$ lexid_incr 1 -n 100
22
..
28
29
330
331
...
398
399
4400
4401
...

In Python.

>>> import lexid
>>> lexid.incr("1")
'22'
>>> lexid.incr("0001")
'0002'
>>> lexid.incr("0999")
'11000'

To avoid possible zero truncation issues (e.g. with "0001" -> "1") and to reduce rollovers, start at a higher number:

>>> lexid.incr("1001")
'1002'
>>> lexid.incr("1002")
'1003'
>>> lexid.incr("1999")
'22000'

Lexical Ids

The key thing to look at is how padding may eventually be exhausted. In order to preserve lexical ordering, build numbers are incremented in a special way. Examples will perhaps illustrate more clearly.

"0001"
"0002"
"0003"
...
"0999"
"11000"
"11001"
...
"19998"
"19999"
"220000"
"220001"

What is happening here is that the left-most digit is incremented early/preemptively. Whenever the left-most digit would change, the padding of the id is expanded through a multiplication by 11.

>>> prev_id  = "0999"
>>> num_digits = len(prev_id)
>>> num_digits
4
>>> prev_int = int(prev_id, 10)
>>> prev_int
999
>>> maybe_next_int = prev_int + 1
>>> maybe_next_int
1000
>>> maybe_next_id = f"{maybe_next_int:0{num_digits}}"
>>> maybe_next_id
"1000"
>>> is_padding_ok = prev_id[0] == maybe_next_id[0]
>>> is_padding_ok
False
>>> if is_padding_ok:
...     # normal case
...     next_id = maybe_next_id
... else:
...     # extra padding needed
...     next_int = maybe_next_int * 11
...     next_id  = str(next_int)
>>> next_id
"11000"

This behaviour ensures that the following semantic is always preserved: new_version > old_version. This will be true, regardless of padding expansion. To illustrate the issue this solves, consider what would happen if we did not expand the padding and instead just incremented numerically.

"0001"
"0002"
"0003"
...
"0999"
"1000"
...
"9999"
"10000"

Here we eventually run into a build number where the lexical ordering is not preserved, since "10000" > "9999" == False (because the string "1" is lexically smaller than "9"). With large enough padding this may be a non issue, but it's better to not have to think about it.

Just as an example of why lexical ordering is a nice property to have, there are lots of software which read git tags, but which have no logic to parse version strings. This software can nonetheless order the version tags correctly using commonly used lexical ordering. At the most basic level it can allow you to use the UNIX sort command, for example to parse VCS tags.

$ printf "v0.9.0\nv0.10.0\nv0.11.0\n" | sort
v0.10.0
v0.11.0
v0.9.0

$ printf "v0.9.0\nv0.10.0\nv0.11.0\n" | sort -n
v0.10.0
v0.11.0
v0.9.0

$ lexid_incr 0997 -n 5 | sort
0998
0999
11000
11001
11002

This sorting even works correctly in JavaScript!

> var versions = ["11002", "11001", "11000", "0999", "0998"];
> versions.sort();
["0998", "0999", "11000", "11001", "11002"]

Changelog for https://github.com/mbarkhau/lexid

v202009

  • Initial release (extracted from pycalver)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lexid-2020.1005.tar.gz (11.6 kB view details)

Uploaded Source

Built Distribution

lexid-2020.1005-py2.py3-none-any.whl (7.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file lexid-2020.1005.tar.gz.

File metadata

  • Download URL: lexid-2020.1005.tar.gz
  • Upload date:
  • Size: 11.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for lexid-2020.1005.tar.gz
Algorithm Hash digest
SHA256 52333a2b9ebd14aa0dfeb33de72bd159c2dc31adb9c59cddfc486e2b69bfdcd1
MD5 1758ebc3ab376e3a95f53ba7d21426c6
BLAKE2b-256 cf8ee2f5326703081d3c4657b84d5814227fc35ffdde48c8b1ce91fe6da094c6

See more details on using hashes here.

File details

Details for the file lexid-2020.1005-py2.py3-none-any.whl.

File metadata

  • Download URL: lexid-2020.1005-py2.py3-none-any.whl
  • Upload date:
  • Size: 7.6 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.6.0.post20200814 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for lexid-2020.1005-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 53eb7182c9e9d9f84d72b06f7338b9cfad0fa14804cc60362a55a6f03f7bca33
MD5 4353bf0a6469b41a1cc62421a748ba04
BLAKE2b-256 b2a3d9e60e1044aa56e51ef9af0da801d6d9f51a774591f8b78fdcb27b669248

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page