Skip to main content

Prepare data for LexImpact

Project description

LexImpact Prepare Data

Ce projet regroupe les scripts permettant de préparer les données des différents projets Leximpact.

Schéma complet de préparation et d'utilisation des données

LexImpact Pipeline

Le pipeline prepare-data est donc le suivant :

Input: erfs_flat_2018.h5

01_db_reduce.ipynb

Objectif: Réduit le nombre de variables dans la base

Output: 01_erfs_reduced_2018.h5

02_db_enlarge.ipynb

Objectif: Ajoute des gens fictifs dans la base pour pouvoir calibrer

Output: 02_erfs_enlarged_2018.h5

03_db_add_rfr.ipynb

Input : CalibPote-2018-revkire.json

Objectifs:

  • Calculer le RFR dans OpenFisca
  • Calibrer le RFR ERFS_2018 sur POTE_2018

Output: 03_erfs_rfr_2018.h5

04_db_add_var

0403_db_add_var_copules.ipynb

0401_db_add_var_copules-algo_monte-carlo.ipynb

0402_db_add_var_copules-validate.ipynb

Input : ExportCopule-2018-variable.json

Objectif: Ajoute les variables issues de POTE 2018 dans la base ERFS 2018

Output: 04_erfs_var_copules_2018.h5

05_db_calib_var_copules.ipynb

Input : CalibPote-2019-variable.json

Objectifs:

  • Vieillit la base ERFS_2018 vers 2019 (nos données les plus récentes) : inflation économique et inflation des foyers
  • Calibre chacune des variables issues de POTE sur POTE 2019

Output: 05_erfs_calibrated_ff_2018_to_2019.h5

06_db_aging_final.ipynb

Objectifs:

  • Vieillit la base ERFS_2019 vers 2021 (année voulue pour les calculs) : inflation économique et inflation des foyers
  • Bruitage statistique de la base pour anonymisation

Output: 06_erfs_ff_2018_aged_2021.h5

How to contribute

Please see the contributing page.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

leximpact_prepare_data-0.0.3.tar.gz (50.4 kB view details)

Uploaded Source

Built Distribution

leximpact_prepare_data-0.0.3-py3-none-any.whl (54.3 kB view details)

Uploaded Python 3

File details

Details for the file leximpact_prepare_data-0.0.3.tar.gz.

File metadata

  • Download URL: leximpact_prepare_data-0.0.3.tar.gz
  • Upload date:
  • Size: 50.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for leximpact_prepare_data-0.0.3.tar.gz
Algorithm Hash digest
SHA256 be304ad47df19538b6c839c871af2b2f1bfb91eea2ecf3efc8e20aaf91aaa3f5
MD5 9e1ac79c42d8e9a56de87b46ded088f9
BLAKE2b-256 9a3983b640f034b129866c705125effe6b1977a697ec9443596322ba71718b90

See more details on using hashes here.

File details

Details for the file leximpact_prepare_data-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: leximpact_prepare_data-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 54.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for leximpact_prepare_data-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 c1e6d040c26ceb72735daa22b5d737594470b04a07a86d5a354e5650a362f951
MD5 f0d47932370a915a048676887b2c03ea
BLAKE2b-256 d85477f122bb8d1ee3b06664ce859f914aca88f7b5354cf8991f104a9fd80f9f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page