Skip to main content

Prepare data for LexImpact

Project description

LexImpact Prepare Data

Ce projet regroupe les scripts permettant de préparer les données des différents projets Leximpact.

Schéma complet de préparation et d'utilisation des données

LexImpact Pipeline

Le pipeline prepare-data est donc le suivant :

Input: erfs_flat_2018.h5

01_db_reduce.ipynb

Objectif: Réduit le nombre de variables dans la base

Output: 01_erfs_reduced_2018.h5

02_db_enlarge.ipynb

Objectif: Ajoute des gens fictifs dans la base pour pouvoir calibrer

Output: 02_erfs_enlarged_2018.h5

03_db_add_rfr.ipynb

Input : CalibPote-2018-revkire.json

Objectifs:

  • Calculer le RFR dans OpenFisca
  • Calibrer le RFR ERFS_2018 sur POTE_2018

Output: 03_erfs_rfr_2018.h5

04_db_add_var

0403_db_add_var_copules.ipynb

0401_db_add_var_copules-algo_monte-carlo.ipynb

0402_db_add_var_copules-validate.ipynb

Input : ExportCopule-2018-variable.json

Objectif: Ajoute les variables issues de POTE 2018 dans la base ERFS 2018

Output: 04_erfs_var_copules_2018.h5

05_db_calib_var_copules.ipynb

Input : CalibPote-2019-variable.json

Objectifs:

  • Vieillit la base ERFS_2018 vers 2019 (nos données les plus récentes) : inflation économique et inflation des foyers
  • Calibre chacune des variables issues de POTE sur POTE 2019

Output: 05_erfs_calibrated_ff_2018_to_2019.h5

06_db_aging_final.ipynb

Objectifs:

  • Vieillit la base ERFS_2019 vers 2021 (année voulue pour les calculs) : inflation économique et inflation des foyers
  • Bruitage statistique de la base pour anonymisation

Output: 06_erfs_ff_2018_aged_2021.h5

How to contribute

Please see the contributing page.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

leximpact_prepare_data-0.0.7.tar.gz (50.4 kB view details)

Uploaded Source

Built Distribution

leximpact_prepare_data-0.0.7-py3-none-any.whl (54.3 kB view details)

Uploaded Python 3

File details

Details for the file leximpact_prepare_data-0.0.7.tar.gz.

File metadata

  • Download URL: leximpact_prepare_data-0.0.7.tar.gz
  • Upload date:
  • Size: 50.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for leximpact_prepare_data-0.0.7.tar.gz
Algorithm Hash digest
SHA256 a0ec4286f9915b4929af5a95954a629abf617859853224c178026a66821d7241
MD5 58bff10852d8a88d1cce3acb15028ee3
BLAKE2b-256 8bced78be58b58c5364e99163bf1add4fd0ff2e8ee7037fd04853f92d885f0b3

See more details on using hashes here.

File details

Details for the file leximpact_prepare_data-0.0.7-py3-none-any.whl.

File metadata

  • Download URL: leximpact_prepare_data-0.0.7-py3-none-any.whl
  • Upload date:
  • Size: 54.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for leximpact_prepare_data-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 fc2f5b424025360b557c6f78ab552094ab7e5449ecb0cc2ef24cf312068e4a85
MD5 e9491e4594a056da3efcb5f6d4747992
BLAKE2b-256 5d465569476436ac6dbe025bc894eccf96a504f823e3fb581b34a719d6ab7f1e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page