Skip to main content

Survival analysis in Python, including Kaplan Meier, Nelson Aalen and regression

Project description

PyPI version Build Status Coverage Status Total alerts Language grade: Python Join the chat at https://gitter.im/python-lifelines/Lobby Code style: black DOI

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical community. Its purpose was to answer why do events occur now versus later under uncertainty (where events might refer to deaths, disease remission, etc.). This is great for researchers who are interested in measuring lifetimes: they can answer questions like what factors might influence deaths?

But outside of medicine and actuarial science, there are many other interesting and exciting applications of this survival analysis. For example:

  • SaaS providers are interested in measuring customer lifetimes, or time to first behaviors
  • inventory stock out is a censoring event for true "demand" of a good.
  • sociologists are interested in measuring political parties' lifetimes, or relationships, or marriages
  • analyzing Godwin's law in Reddit comments
  • A/B tests to determine how long it takes different groups to perform an action.

lifelines is a pure Python implementation of the best parts of survival analysis. We'd love to hear if you are using lifelines, please leave an Issue and let us know your thoughts on the library.

Installation:

You can install lifelines using

   pip install lifelines

Or getting the bleeding edge version with:

   pip install --upgrade --no-deps git+https://github.com/CamDavidsonPilon/lifelines.git

from the command line.

Installation Issues?

See the common problems/solutions for installing lifelines.

lifelines Documentation and an intro to survival analysis

If you are new to survival analysis, wondering why it is useful, or are interested in lifelines examples, API, and syntax, please check out the Documentation and Tutorials page

Example:

from lifelines import KaplanMeierFitter

durations = [11, 74, 71, 76, 28, 92, 89, 48, 90, 39, 63, 36, 54, 64, 34, 73, 94, 37, 56, 76]
event_observed = [True, True, False, True, True, True, True, False, False, True, True,
                  True, True, True, True, True, False, True, False, True]

kmf = KaplanMeierFitter()
kmf.fit(durations, event_observed)
kmf.plot()

Contacting & troubleshooting

Roadmap

You can find the roadmap for lifelines here.

Development

See our Contributing guidelines.


Citing lifelines

You can use this badge below to generate a DOI and reference text for the latest related version of lifelines:

DOI

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lifelines-0.20.5.tar.gz (293.5 kB view details)

Uploaded Source

Built Distribution

lifelines-0.20.5-py3-none-any.whl (306.7 kB view details)

Uploaded Python 3

File details

Details for the file lifelines-0.20.5.tar.gz.

File metadata

  • Download URL: lifelines-0.20.5.tar.gz
  • Upload date:
  • Size: 293.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for lifelines-0.20.5.tar.gz
Algorithm Hash digest
SHA256 7ec623879832410abdee8edffcc2666da8cda1bd0d004e85d4fd4f635ae2154b
MD5 2a291be2916332cb32407ccece102024
BLAKE2b-256 735113caa18b247b12ec888b58510bde1b4e704301cddbeab3ddbf43b21bbfdd

See more details on using hashes here.

File details

Details for the file lifelines-0.20.5-py3-none-any.whl.

File metadata

  • Download URL: lifelines-0.20.5-py3-none-any.whl
  • Upload date:
  • Size: 306.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for lifelines-0.20.5-py3-none-any.whl
Algorithm Hash digest
SHA256 479c08489f7dbc96dd02952238bdb59c608b4df3872b779a819cf3bd754e4487
MD5 54f4bb1ff070a82a6870c683254acbf4
BLAKE2b-256 9cd270540d77657c4d6daec9b31790d4d00de09ac41ee07347df4a51f2925154

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page