Skip to main content

linkml-store

Project description

linkml-store

An AI-ready data management and integration platform. LinkML-Store provides an abstraction layer over multiple different backends (including DuckDB, MongoDB, Neo4j, and local filesystems), allowing for common query, index, and storage operations.

For full documentation, see https://linkml.io/linkml-store/

See these slides for a high level overview.

Warning LinkML-Store is still undergoing changes and refactoring, APIs and command line options are subject to change!

Quick Start

Install, add data, query it:

pip install linkml-store[all]
linkml-store -d duckdb:///db/my.db -c persons insert data/*.json
linkml-store -d duckdb:///db/my.db -c persons query -w "occupation: Bricklayer"

Index it, search it:

linkml-store -d duckdb:///db/my.db -c persons index -t llm
linkml-store -d duckdb:///db/my.db -c persons search "all persons employed in construction"

Validate it:

linkml-store -d duckdb:///db/my.db -c persons validate

Basic usage

The CRUDSI pattern

Most database APIs implement the CRUD pattern: Create, Read, Update, Delete. LinkML-Store adds Search and Inference to this pattern, making it CRUDSI.

The notion of "Search" and "Inference" is intended to be flexible and extensible, including:

  • Search
    • Traditional keyword search
    • Search using LLM Vector embeddings (without a dedicated vector database)
    • Pluggable specialized search, e.g. genomic sequence (not yet implemented)
  • Inference (encompassing validation, repair, and inference of missing data)
    • Classic rule-based inference
    • Inference using LLM Retrieval Augmented Generation (RAG)
    • Statistical/ML inference

Features

Multiple Adapters

LinkML-Store is designed to work with multiple backends, giving a common abstraction layer

Coming soon: any RDBMS, any triplestore, Neo4J, HDF5-based stores, ChromaDB/Vector dbs ...

The intent is to give a union of all features of each backend. For example, analytic faceted queries are provided for all backends, not just Solr.

Composable indexes

Many backends come with their own indexing and search schemes. Classically this was Lucene-based indexes, now it is semantic search using LLM embeddings.

LinkML store treats indexing as an orthogonal concern - you can compose different indexing schemes with different backends. You don't need to have a vector database to run embedding search!

See How to Use-Semantic-Search

Use with LLMs

TODO - docs

Validation

LinkML-Store is backed by LinkML, which allows for powerful expressive structural and semantic constraints.

See Indexing JSON

and Referential Integrity

Web API

There is a preliminary API following HATEOAS principles implemented using FastAPI.

To start you should first create a config file, e.g. db/conf.yaml:

Then run:

export LINKML_STORE_CONFIG=./db/conf.yaml
make api

The API returns links as well as data objects, it's recommended to use a Chrome plugin for JSON viewing for exploring the API. TODO: add docs here.

The main endpoints are:

  • http://localhost:8000/ - the root of the API
  • http://localhost:8000/pages/ - browse the API via HTML
  • http://localhost:8000/docs - the Swagger UI

Streamlit app

make app

Background

See these slides for more details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

linkml_store-0.2.0.tar.gz (83.2 kB view details)

Uploaded Source

Built Distribution

linkml_store-0.2.0-py3-none-any.whl (110.7 kB view details)

Uploaded Python 3

File details

Details for the file linkml_store-0.2.0.tar.gz.

File metadata

  • Download URL: linkml_store-0.2.0.tar.gz
  • Upload date:
  • Size: 83.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for linkml_store-0.2.0.tar.gz
Algorithm Hash digest
SHA256 d48726250ed15ec84f72dd3f44c65822ec1a8d2302c1dbb1387932b468235228
MD5 bfa49dc4feca37736df25472f67538cb
BLAKE2b-256 143a896e4dfcdb21f4ee1cd3d43f2142fe857a9f6462212a6e41342c05cc8a70

See more details on using hashes here.

Provenance

File details

Details for the file linkml_store-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: linkml_store-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 110.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for linkml_store-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b26085dd351eab7acfde170d5f7892bacf0de3746f71b3d30d9454cb8678661b
MD5 98d882d753b60917dd29794a55995a02
BLAKE2b-256 543e020ab128cf0c4dfa607cac622bac7675fcfae6192d32b10bdff10ed2ca33

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page