Skip to main content

Python in-memory ORM database

Project description

littletable - a Python module to give ORM-like access to a collection of objects

Build Status Binder

The littletable module provides a low-overhead, schema-less, in-memory database access to a collection of user objects. littletable provides a DataObject class for ad hoc creation of semi-immutable objects that can be stored in a littletable Table. Tables can also contain user-defined objects, using those objects' __dict__, __slots__, or _fields mappings to access object attributes.

In addition to basic ORM-style insert/remove/query/delete access to the contents of a Table, littletable offers:

  • simple indexing for improved retrieval performance, and optional enforcing key uniqueness
  • access to objects using indexed attributes
  • simplified joins using "+" operator syntax between annotated Tables
  • the result of any query or join is a new first-class littletable Table
  • access like a standard Python list to the records in a Table, including indexing/slicing, iter, zip, len, groupby, etc.
  • access like a standard Python dict to attributes with a unique index, or like a standard Python defaultdict(list) to attributes with a non-unique index.

littletable Tables do not require an upfront schema definition, but simply work off of the attributes in the stored values, and those referenced in any query parameters.

Importing data from CSV files:

You can easily import a CSV file into a Table using Table.csv_import():

t = Table().csv_import("my_data.csv")

In place of a local file name, you can also specify an HTTP url:

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"
iris_table = Table('iris').csv_import(url)

You can also directly import CSV data as a string:

catalog = Table("catalog")

catalog_data = """\
sku,description,unitofmeas,unitprice
BRDSD-001,Bird seed,LB,3
BBS-001,Steel BB's,LB,5
MGNT-001,Magnet,EA,8"""

catalog.csv_import(catalog_data, transforms={'unitprice': int})

Files containing JSON-formatted records can be similarly imported using Table.json_import().

Tabular output

To produce a nice tabular output for a table, you can use the embedded support for the rich module, as_html() in Jupyter Notebook, or the tabulate module:

Using table.present() (implemented using rich; present() accepts rich Table keyword args):

table(title_str).present(fields=["col1", "col2", "col3"])
  or
table.select("col1 col2 col3")(title_str).present(caption="caption text", 
                                                  caption_justify="right")

Using Jupyter Notebook:

from IPython.display import HTML, display
display(HTML(table.as_html()))

Using tabulate:

from tabulate import tabulate
print(tabulate(map(vars, table), headers="keys"))

Sample Demo

Here is a simple littletable data storage/retrieval example:

from littletable import Table, DataObject

customers = Table('customers')
customers.create_index("id", unique=True)
customers.insert(DataObject(id="0010", name="George Jetson"))
customers.insert(DataObject(id="0020", name="Wile E. Coyote"))
customers.insert(DataObject(id="0030", name="Jonny Quest"))

catalog = Table('catalog')
catalog.create_index("sku", unique=True)
catalog.insert(DataObject(sku="ANVIL-001", descr="1000lb anvil", unitofmeas="EA",unitprice=100))
catalog.insert(DataObject(sku="BRDSD-001", descr="Bird seed", unitofmeas="LB",unitprice=3))
catalog.insert(DataObject(sku="MAGNT-001", descr="Magnet", unitofmeas="EA",unitprice=8))
catalog.insert(DataObject(sku="MAGLS-001", descr="Magnifying glass", unitofmeas="EA",unitprice=12))

wishitems = Table('wishitems')
wishitems.create_index("custid")
wishitems.create_index("sku")
# easy to import CSV data from a string or file
wishitems.csv_import("""\
custid,sku
0020,ANVIL-001
0020,BRDSD-001
0020,MAGNT-001
0030,MAGNT-001
0030,MAGLS-001
""")

# print a particular customer name 
# (unique indexes will return a single item; non-unique
# indexes will return a list of all matching items)
print(customers.by.id["0030"].name)

# see all customer names
for name in customers.all.name:
    print(name)

# print all items sold by the pound
for item in catalog.where(unitofmeas="LB"):
    print(item.sku, item.descr)

# print all items that cost more than 10
for item in catalog.where(lambda o: o.unitprice > 10):
    print(item.sku, item.descr, item.unitprice)

# join tables to create queryable wishlists collection
wishlists = customers.join_on("id") + wishitems.join_on("custid") + catalog.join_on("sku")

# print all wishlist items with price > 10 (can use Table.gt comparator instead of lambda)
bigticketitems = wishlists().where(unitprice=Table.gt(10))
for item in bigticketitems:
    print(item)

# list all wishlist items in descending order by price
for item in wishlists().sort("unitprice desc"):
    print(item)

# print output as a nicely-formatted table
wishlists().sort("unitprice desc")("Wishlists").present()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

littletable-1.1.0.tar.gz (44.5 kB view details)

Uploaded Source

Built Distribution

littletable-1.1.0-py2.py3-none-any.whl (26.7 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file littletable-1.1.0.tar.gz.

File metadata

  • Download URL: littletable-1.1.0.tar.gz
  • Upload date:
  • Size: 44.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.8.0

File hashes

Hashes for littletable-1.1.0.tar.gz
Algorithm Hash digest
SHA256 43d482ba8d4416c92f92f2b010d8fc36b528f686e3bfd2f3d129a7a896d2c05a
MD5 e1eb67dd4ca3253ced198d92aa1f296d
BLAKE2b-256 793439b51dac768bb73b20fe92a5303913094cce16740f3c31b5564f79a2ef97

See more details on using hashes here.

File details

Details for the file littletable-1.1.0-py2.py3-none-any.whl.

File metadata

  • Download URL: littletable-1.1.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 26.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.8.0

File hashes

Hashes for littletable-1.1.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 682b08103b2ce0a18a06a19b82ea377a4c0a16ad6011e235c21e6e4abe050278
MD5 2969c61ea9e5099415eac20fd8043157
BLAKE2b-256 decae2adde1d35ae579b00bacb647f2b6f0f8aa80c9e1e7dab49700fef794396

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page