Python in-memory ORM database
Project description
littletable - a Python module to give ORM-like access to a collection of objects
Introduction
The littletable
module provides a low-overhead, schema-less, in-memory database access to a collection
of user objects. littletable
Tables will accept any user-defined object type, including namedtuples
, dataclasses
,
and types.SimpleNamespaces
, using those objects' __dict__
, __slots__
, or _fields
mappings to access object
attributes and determine the Table's "columns". littletable
also provides a DataObject
class for easy creation of
namespace objects from Python dict
instances.
In addition to basic ORM-style insert/remove/query/delete access to the contents of a Table
, littletable
offers:
- simple indexing for improved retrieval performance, and optional enforcing key uniqueness
- access to objects using indexed attributes
- direct CSV import/export
- clean tabular output for data presentation
- simplified joins using
"+"
operator syntax between annotatedTable
s - the result of any query or join is a new first-class
littletable
Table
- access like a standard Python list to the records in a Table, including indexing/slicing,
iter
,zip
,len
,groupby
, etc. - access like a standard Python
dict
to attributes with a unique index, or like a standard Pythondefaultdict(list)
to attributes with a non-unique index
littletable
Table
s do not require an upfront schema definition, but simply work off of the attributes in
the stored values, and those referenced in any query parameters.
Importing data from CSV files
You can easily import a CSV file into a Table using Table.csv_import():
t = Table().csv_import("my_data.csv")
In place of a local file name, you can also specify an HTTP url:
url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"
iris_table = Table('iris').csv_import(url)
You can also directly import CSV data as a string:
catalog = Table("catalog")
catalog_data = """\
sku,description,unitofmeas,unitprice
BRDSD-001,Bird seed,LB,3
BBS-001,Steel BB's,LB,5
MGNT-001,Magnet,EA,8"""
catalog.csv_import(catalog_data, transforms={'unitprice': int})
Data can also be directly imported from compressed .zip, .gz, and .xz files.
Files containing JSON-formatted records can be similarly imported using Table.json_import()
.
Tabular output
To produce a nice tabular output for a table, you can use the embedded support for
the rich module, as_html()
in Jupyter Notebook,
or the tabulate module:
Using table.present()
(implemented using rich
; present()
accepts rich
Table
keyword args):
table(title_str).present(fields=["col1", "col2", "col3"])
or
table.select("col1 col2 col3")(title_str).present(caption="caption text",
caption_justify="right")
Using Jupyter Notebook
:
from IPython.display import HTML, display
display(HTML(table.as_html()))
Using tabulate
:
from tabulate import tabulate
print(tabulate(map(vars, table), headers="keys"))
For More Info
Extended "getting started" notes at how_to_use_littletable.md.
Sample Demo
Here is a simple littletable data storage/retrieval example:
from littletable import Table, DataObject
customers = Table('customers')
customers.create_index("id", unique=True)
customers.insert(DataObject(id="0010", name="George Jetson"))
customers.insert(DataObject(id="0020", name="Wile E. Coyote"))
customers.insert(DataObject(id="0030", name="Jonny Quest"))
catalog = Table('catalog')
catalog.create_index("sku", unique=True)
catalog.insert(DataObject(sku="ANVIL-001", descr="1000lb anvil", unitofmeas="EA",unitprice=100))
catalog.insert(DataObject(sku="BRDSD-001", descr="Bird seed", unitofmeas="LB",unitprice=3))
catalog.insert(DataObject(sku="MAGNT-001", descr="Magnet", unitofmeas="EA",unitprice=8))
catalog.insert(DataObject(sku="MAGLS-001", descr="Magnifying glass", unitofmeas="EA",unitprice=12))
wishitems = Table('wishitems')
wishitems.create_index("custid")
wishitems.create_index("sku")
# easy to import CSV data from a string or file
wishitems.csv_import("""\
custid,sku
0020,ANVIL-001
0020,BRDSD-001
0020,MAGNT-001
0030,MAGNT-001
0030,MAGLS-001
""")
# print a particular customer name
# (unique indexes will return a single item; non-unique
# indexes will return a list of all matching items)
print(customers.by.id["0030"].name)
# see all customer names
for name in customers.all.name:
print(name)
# print all items sold by the pound
for item in catalog.where(unitofmeas="LB"):
print(item.sku, item.descr)
# print all items that cost more than 10
for item in catalog.where(lambda o: o.unitprice > 10):
print(item.sku, item.descr, item.unitprice)
# join tables to create queryable wishlists collection
wishlists = customers.join_on("id") + wishitems.join_on("custid") + catalog.join_on("sku")
# print all wishlist items with price > 10 (can use Table.gt comparator instead of lambda)
bigticketitems = wishlists().where(unitprice=Table.gt(10))
for item in bigticketitems:
print(item)
# list all wishlist items in descending order by price
for item in wishlists().sort("unitprice desc"):
print(item)
# print output as a nicely-formatted table
wishlists().sort("unitprice desc")("Wishlists").present()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file littletable-1.3.0.tar.gz
.
File metadata
- Download URL: littletable-1.3.0.tar.gz
- Upload date:
- Size: 45.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 823f6ebb0f9f2f10fcc933d954f688f3c799c8581678b4fcfdb1f82a463d8e19 |
|
MD5 | 1f03e3c9cf4a6fe4ebc75cdb95a8c357 |
|
BLAKE2b-256 | 6c3e7367026fbe0ebe56e9e8e9bf5a7a06e21d1bb5d9ba94960b65522236622e |
File details
Details for the file littletable-1.3.0-py2.py3-none-any.whl
.
File metadata
- Download URL: littletable-1.3.0-py2.py3-none-any.whl
- Upload date:
- Size: 28.7 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.8.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 498e43c352500fbe36554e8ae7fab1c13407266bb0a241cd96067e5f3dfc052c |
|
MD5 | 501f1f1161c647c3927cf92e3639dd02 |
|
BLAKE2b-256 | 978214e16cf9f5c310c569190e31429d930e0040b6580552fe6e30c5823ac7b3 |