Skip to main content

Python in-memory ORM database

Project description

littletable - a Python module to give ORM-like access to a collection of objects

Build Status Binder

Introduction

The littletable module provides a low-overhead, schema-less, in-memory database access to a collection of user objects. littletable Tables will accept Python dicts or any user-defined object type, including:

  • namedtuples and typing.NamedTuples
  • dataclasses
  • types.SimpleNamespaces
  • attrs classes
  • PyDantic data models
  • traitlets

littletable infers the Table's "columns" from those objects' __dict__, __slots__, or _fields mappings to access object attributes.

If populated with Python dicts, they get stored as SimpleNamespaces or littletable.DictObjects.

In addition to basic ORM-style insert/remove/query/delete access to the contents of a Table, littletable offers:

  • simple indexing for improved retrieval performance, and optional enforcing key uniqueness
  • access to objects using indexed attributes
  • direct import/export to CSV and Excel .xlsx files
  • clean tabular output for data presentation
  • simplified joins using "+" operator syntax between annotated Tables
  • the result of any query or join is a new first-class littletable Table
  • simple full-text search against multi-word text attributes
  • access like a standard Python list to the records in a Table, including indexing/slicing, iter, zip, len, groupby, etc.
  • access like a standard Python dict to attributes with a unique index, or like a standard Python defaultdict(list) to attributes with a non-unique index

littletable Tables do not require an upfront schema definition, but simply work off of the attributes in the stored values, and those referenced in any query parameters.

Importing data from CSV files

You can easily import a CSV file into a Table using Table.csv_import():

t = Table().csv_import("my_data.csv")

In place of a local file name, you can also specify an HTTP url:

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"
names = ["sepal-length", "sepal-width", "petal-length", "petal-width", "class"]
iris_table = Table('iris').csv_import(url, fieldnames=names)

You can also directly import CSV data as a string:

catalog = Table("catalog")

catalog_data = """\
sku,description,unitofmeas,unitprice
BRDSD-001,Bird seed,LB,3
BBS-001,Steel BB's,LB,5
MGNT-001,Magnet,EA,8"""

catalog.csv_import(catalog_data, transforms={'unitprice': int})

Data can also be directly imported from compressed .zip, .gz, and .xz files.

Files containing JSON-formatted records can be similarly imported using Table.json_import().

Tabular output

To produce a nice tabular output for a table, you can use the embedded support for the rich module, as_html() in Jupyter Notebook, or the tabulate module:

Using table.present() (implemented using rich; present() accepts rich Table keyword args):

table(title_str).present(fields=["col1", "col2", "col3"])
    or
table.select("col1 col2 col3")(title_str).present(caption="caption text", 
                                                  caption_justify="right")

Using Jupyter Notebook:

from IPython.display import HTML, display
display(HTML(table.as_html()))

Using tabulate:

from tabulate import tabulate
print(tabulate((vars(rec) for rec in table), headers="keys"))

For More Info

Extended "getting started" notes at how_to_use_littletable.md.

Sample Demo

Here is a simple littletable data storage/retrieval example:

from littletable import Table, DataObject

customers = Table('customers')
customers.create_index("id", unique=True)
customers.insert(DataObject(id="0010", name="George Jetson"))
customers.insert(DataObject(id="0020", name="Wile E. Coyote"))
customers.insert(DataObject(id="0030", name="Jonny Quest"))

catalog = Table('catalog')
catalog.create_index("sku", unique=True)
catalog.insert(DataObject(sku="ANVIL-001", descr="1000lb anvil", unitofmeas="EA",unitprice=100))
catalog.insert(DataObject(sku="BRDSD-001", descr="Bird seed", unitofmeas="LB",unitprice=3))
catalog.insert(DataObject(sku="MAGNT-001", descr="Magnet", unitofmeas="EA",unitprice=8))
catalog.insert(DataObject(sku="MAGLS-001", descr="Magnifying glass", unitofmeas="EA",unitprice=12))

wishitems = Table('wishitems')
wishitems.create_index("custid")
wishitems.create_index("sku")

# easy to import CSV data from a string or file
wishitems.csv_import("""\
custid,sku
0020,ANVIL-001
0020,BRDSD-001
0020,MAGNT-001
0030,MAGNT-001
0030,MAGLS-001
""")

# print a particular customer name 
# (unique indexes will return a single item; non-unique
# indexes will return a list of all matching items)
print(customers.by.id["0030"].name)

# see all customer names
for name in customers.all.name:
    print(name)

# print all items sold by the pound
for item in catalog.where(unitofmeas="LB"):
    print(item.sku, item.descr)

# print all items that cost more than 10
for item in catalog.where(lambda o: o.unitprice > 10):
    print(item.sku, item.descr, item.unitprice)

# join tables to create queryable wishlists collection
wishlists = customers.join_on("id") + wishitems.join_on("custid") + catalog.join_on("sku")

# print all wishlist items with price > 10 (can use Table.gt comparator instead of lambda)
bigticketitems = wishlists().where(unitprice=Table.gt(10))
for item in bigticketitems:
    print(item)

# list all wishlist items in descending order by price
for item in wishlists().sort("unitprice desc"):
    print(item)

# print output as a nicely-formatted table
wishlists().sort("unitprice desc")("Wishlists").present()

# print output as an HTML table
print(wishlists().sort("unitprice desc")("Wishlists").as_html())

# print output as a Markdown table
print(wishlists().sort("unitprice desc")("Wishlists").as_markdown())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

littletable-2.1.1.tar.gz (65.9 kB view details)

Uploaded Source

Built Distribution

littletable-2.1.1-py3-none-any.whl (38.3 kB view details)

Uploaded Python 3

File details

Details for the file littletable-2.1.1.tar.gz.

File metadata

  • Download URL: littletable-2.1.1.tar.gz
  • Upload date:
  • Size: 65.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for littletable-2.1.1.tar.gz
Algorithm Hash digest
SHA256 8214bde59941d3cab233fef5dd17166ea0c4749bd77e9791773be0eaca4f34ef
MD5 788b39e069c47bdaedbc9e21eaec1945
BLAKE2b-256 c75c9e89ac8a0732216cb22c41c3cc7f858de67ebd0c7481755377ce169019b1

See more details on using hashes here.

File details

Details for the file littletable-2.1.1-py3-none-any.whl.

File metadata

  • Download URL: littletable-2.1.1-py3-none-any.whl
  • Upload date:
  • Size: 38.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for littletable-2.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a295f75c42e35f120feaf3402319ac3ddaef160d8429278cac41f8ccb7f26f40
MD5 bca0ade1b1a314241dd63a5b0a371a71
BLAKE2b-256 dbef35f1440d21d479ee671616fecae5bf963b4efff3a491bfc7b1330b9f1219

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page