Skip to main content

Python in-memory ORM database

Project description

littletable - a Python module to give ORM-like access to a collection of objects

Build Status Binder

Introduction

The littletable module provides a low-overhead, schema-less, in-memory database access to a collection of user objects. littletable Tables will accept Python dicts or any user-defined object type, including:

  • namedtuples and typing.NamedTuples
  • dataclasses
  • types.SimpleNamespaces
  • attrs classes
  • PyDantic data models
  • traitlets

littletable infers the Table's "columns" from those objects' __dict__, __slots__, or _fields mappings to access object attributes.

If populated with Python dicts, they get stored as SimpleNamespaces or littletable.DictObjects.

In addition to basic ORM-style insert/remove/query/delete access to the contents of a Table, littletable offers:

  • simple indexing for improved retrieval performance, and optional enforcing key uniqueness
  • access to objects using indexed attributes
  • direct import/export to CSV and Excel .xlsx files
  • clean tabular output for data presentation
  • simplified joins using "+" operator syntax between annotated Tables
  • the result of any query or join is a new first-class littletable Table
  • simple full-text search against multi-word text attributes
  • access like a standard Python list to the records in a Table, including indexing/slicing, iter, zip, len, groupby, etc.
  • access like a standard Python dict to attributes with a unique index, or like a standard Python defaultdict(list) to attributes with a non-unique index

littletable Tables do not require an upfront schema definition, but simply work off of the attributes in the stored values, and those referenced in any query parameters.

Importing data from CSV files

You can easily import a CSV file into a Table using Table.csv_import():

t = Table().csv_import("my_data.csv")

In place of a local file name, you can also specify an HTTP url:

url = "https://raw.githubusercontent.com/jbrownlee/Datasets/master/iris.csv"
names = ["sepal-length", "sepal-width", "petal-length", "petal-width", "class"]
iris_table = Table('iris').csv_import(url, fieldnames=names)

You can also directly import CSV data as a string:

catalog = Table("catalog")

catalog_data = """\
sku,description,unitofmeas,unitprice
BRDSD-001,Bird seed,LB,3
BBS-001,Steel BB's,LB,5
MGNT-001,Magnet,EA,8"""

catalog.csv_import(catalog_data, transforms={'unitprice': int})

Data can also be directly imported from compressed .zip, .gz, and .xz files.

Files containing JSON-formatted records can be similarly imported using Table.json_import().

Tabular output

To produce a nice tabular output for a table, you can use the embedded support for the rich module, as_html() in Jupyter Notebook, or the tabulate module:

Using table.present() (implemented using rich; present() accepts rich Table keyword args):

table(title_str).present(fields=["col1", "col2", "col3"])
    or
table.select("col1 col2 col3")(title_str).present(caption="caption text", 
                                                  caption_justify="right")

Using Jupyter Notebook:

from IPython.display import HTML, display
display(HTML(table.as_html()))

Using tabulate:

from tabulate import tabulate
print(tabulate((vars(rec) for rec in table), headers="keys"))

For More Info

Extended "getting started" notes at how_to_use_littletable.md.

Sample Demo

Here is a simple littletable data storage/retrieval example:

from littletable import Table

customers = Table('customers')
customers.create_index("id", unique=True)
customers.csv_import("""\
id,name
0010,George Jetson
0020,Wile E. Coyote
0030,Jonny Quest
""")

catalog = Table('catalog')
catalog.create_index("sku", unique=True)
catalog.insert({"sku": "ANVIL-001", "descr": "1000lb anvil", "unitofmeas": "EA","unitprice": 100})
catalog.insert({"sku": "BRDSD-001", "descr": "Bird seed", "unitofmeas": "LB","unitprice": 3})
catalog.insert({"sku": "MAGNT-001", "descr": "Magnet", "unitofmeas": "EA","unitprice": 8})
catalog.insert({"sku": "MAGLS-001", "descr": "Magnifying glass", "unitofmeas": "EA","unitprice": 12})

wishitems = Table('wishitems')
wishitems.create_index("custid")
wishitems.create_index("sku")

# easy to import CSV data from a string or file
wishitems.csv_import("""\
custid,sku
0020,ANVIL-001
0020,BRDSD-001
0020,MAGNT-001
0030,MAGNT-001
0030,MAGLS-001
""")

# print a particular customer name
# (unique indexes will return a single item; non-unique
# indexes will return a list of all matching items)
print(customers.by.id["0030"].name)

# see all customer names
for name in customers.all.name:
    print(name)

# print all items sold by the pound
for item in catalog.where(unitofmeas="LB"):
    print(item.sku, item.descr)

# print all items that cost more than 10
for item in catalog.where(lambda o: o.unitprice > 10):
    print(item.sku, item.descr, item.unitprice)

# join tables to create queryable wishlists collection
wishlists = customers.join_on("id") + wishitems.join_on("custid") + catalog.join_on("sku")

# print all wishlist items with price > 10 (can use Table.gt comparator instead of lambda)
bigticketitems = wishlists().where(unitprice=Table.gt(10))
for item in bigticketitems:
    print(item)

# list all wishlist items in descending order by price
for item in wishlists().sort("unitprice desc"):
    print(item)

# print output as a nicely-formatted table
wishlists().sort("unitprice desc")("Wishlists").present()

# print output as an HTML table
print(wishlists().sort("unitprice desc")("Wishlists").as_html())

# print output as a Markdown table
print(wishlists().sort("unitprice desc")("Wishlists").as_markdown())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

littletable-2.2.5.tar.gz (77.0 kB view details)

Uploaded Source

Built Distribution

littletable-2.2.5-py3-none-any.whl (44.0 kB view details)

Uploaded Python 3

File details

Details for the file littletable-2.2.5.tar.gz.

File metadata

  • Download URL: littletable-2.2.5.tar.gz
  • Upload date:
  • Size: 77.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.16

File hashes

Hashes for littletable-2.2.5.tar.gz
Algorithm Hash digest
SHA256 2ea05392ba7d8cf2af80b4861856a174d6b332b6816616fcf7e16421b2cc701d
MD5 865644dada53984dec8b24aca99411d6
BLAKE2b-256 f3d3d3284f8413ebf7aaf15273ba341229b76e70410495d3d7b77e2a7b0dffd2

See more details on using hashes here.

File details

Details for the file littletable-2.2.5-py3-none-any.whl.

File metadata

  • Download URL: littletable-2.2.5-py3-none-any.whl
  • Upload date:
  • Size: 44.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.16

File hashes

Hashes for littletable-2.2.5-py3-none-any.whl
Algorithm Hash digest
SHA256 3b389210ef8022e88f65539b055340e36e3b85656bf638ff3bf389c4d2c81029
MD5 1cd55ae4b92085ea8d173002b6aaaf27
BLAKE2b-256 d234cf56ac1470cc206c98a17bb542d8060096b8a8bfb7cfb3c15f9203aa0d0d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page