Skip to main content

Utility functions to write LivingPark notebooks.

Project description

LivingPark utils

A collection of utility functions to write LivingPark notebooks.

Usage examples:

import livingpark_utils
from livingpark_utils import download
from livingpark_utils.clinical import moca2mmse
from livingpark_utils.dataset import ppmi

utils = livingpark_utils.LivingParkUtils()
downloader = download.ppmi.Downloader(utils.study_files_dir)

utils.notebook_init()
utils.get_study_files(["Demographics.csv"], default=downloader)
utils.get_T1_nifti_files(
    cohort, default=downloader
)  # `cohort` is of type: pd.DataFrame

ppmi.find_nifti_file_in_cache(x["PATNO"], x["EVENT_ID"], x["Description"])
ppmi.disease_duration()

moca2mmse(2)

Exclude subjects from a cohort without leaking patient information.

from livingpark_utils.ignore import (
    insert_hash,
    remove_ignored,
)

# Assuming a cohort definition defined as `cohort`.
cohort = insert_hash(cohort, columns=["PATNO", "EVENT_ID", "Description"])
remove_ignored(cohort, ignore_file=".ppmiignore")

Usage to execute utility notebooks:

from livingpark_utils.scripts import run

run.mri_metadata()
run.pd_status()

Note: Optionally use the %%capture cell magic to further hide notebook outputs.

CLI commands

Download T1 nifti files using a cohort definition file.

$ get_T1_nifti_files <cohort_file> --downloader (ppmi) [--symlink=<bool>]
[--force=<bool>] [--timeout=<int>]

The cohort_file is a csv file created beforehand. Respectively to the chosen downloader, it must have the following columns:

  • PPMI: PATNO, EVENT_ID, and Description.

Troubleshooting

Permission issues on Windows

We use symbolic links when creating the folder for cached data. Unfortunately, by default, Windows does not authorize users to create symbolic links. To fix this issue on your machine, please follow the guide from this blog post.

Contributing guidelines

We welcome contributions of any kind in the form of Pull-Request to this repository. See also LivingPark contributing guidelines.

Make sure to:

  • Use Python type annotations
  • Include Python docstrings using numpydoc format for all functions
  • Format docstrings
  • Run psf/black on the files you modify
  • Run pre-commit run --all before committing, this will be checked in your PR

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

livingpark_utils-0.8.tar.gz (80.9 kB view details)

Uploaded Source

Built Distribution

livingpark_utils-0.8-py3-none-any.whl (92.4 kB view details)

Uploaded Python 3

File details

Details for the file livingpark_utils-0.8.tar.gz.

File metadata

  • Download URL: livingpark_utils-0.8.tar.gz
  • Upload date:
  • Size: 80.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for livingpark_utils-0.8.tar.gz
Algorithm Hash digest
SHA256 77266d6d7e08a867224601c8f672e26b14a1834f50877e7ec762b6cde9dd747e
MD5 eb013d093ccdaab44e3619692deb27bf
BLAKE2b-256 8f1bdf00c413154f032245b45d28c1965232c6c25c5ae4f7d7d392bf1900d33d

See more details on using hashes here.

Provenance

File details

Details for the file livingpark_utils-0.8-py3-none-any.whl.

File metadata

File hashes

Hashes for livingpark_utils-0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 0671c83b2610a3744b1a08cf272686c8b1fc54387a5fb405d401b166bee88346
MD5 fc53f09e35d50326c04040199a9cbd28
BLAKE2b-256 e562ad1de5bf36cf4b8716079fba38a9eec54015f7d35e845ce481127796dea2

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page